Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 10

Giải SGK Toán 10 Bài 17 (Kết nối tri thức): Dấu của tam thức bậc hai

By admin 14/10/2023 0

Giải bài tập Toán lớp 10 Bài 17: Dấu của tam thức bậc hai

A. Các câu hỏi trong bài

Mở đầu trang 19 Toán 10 Tập 2: Xét bài toán rào vườn ở Bài 16, nhưng ta trả lời câu hỏi: Hai cột góc hàng rào (H.6.8) cần phải cắm cách bờ tường bao nhiêu mét để mảnh đất được rào chắn có diện tích không nhỏ hơn 48 m2?

Lời giải:

Từ Bài 16 ta có diện tích mảnh đất được rào chắn là S(x) = – 2×2 + 20x  (m2).

Mảnh đất được rào chắn có diện tích không nhỏ hơn 48 m2 hay S(x) phải lớn hơn hoặc bằng 48.

Do đó, – 2×2 + 20x ≥ 48 ⇔ 2×2 – 20x + 48 ≤ 0 (*).

Giải bất phương trình (*) ta sẽ trả lời được yêu cầu bài toán.

Sau bài học này ta sẽ giải được bất phương trình (*).

Cụ thể, tam thức bậc hai f(x) = 2×2 – 20x + 48 có hai nghiệm x1 = 4; x2 = 6 và hệ số a = 2 > 0. Do đó tập nghiệm của bất phương trình (*) là S = [4; 6].

Vậy khoảng cách từ điểm cắm cột đến bờ tường phải lớn hơn hoặc bằng 4 m và nhỏ hơn hoặc bằng 6 m thì mảnh đất rào chắn của bác Việt sẽ có diện tích không nhỏ hơn 48 m2.  

Hoạt động 1 trang 19 Toán 10 Tập 2: Hãy chỉ ra một vài đặc điểm chung của các biểu thức dưới đây:

A = 0,5x2;

B = 1 – x2;

C = x2 + x + 1;

D = (1 – x)(2x + 1).

Lời giải:

A = 0,5x2

B = 1 – x2

C = x2 + x + 1

D = (1 – x)(2x + 1) = 2x + 1 – 2x2 – x = – 2x2 + x + 1

Ta nhận thấy các biểu thức trên đều là đa thức của biến x và bậc của các đa thức đó đều là bậc 2.

Luyện tập 1 trang 19 Toán 10 Tập 2: Hãy cho biết biểu thức nào sau đây là tam thức bậc hai.

A = 3x + 2x + 1;

B = – 5x4 + 3x2 + 4;

C = −23x2+7x−4;

D = 1x2+21x+3.

Lời giải:

Trong các biểu thức đã cho, ta thấy có biểu thức C = −23x2+7x−4 là tam thức bậc hai vì nó có dạng ax2 + bx + c, trong đó a = −23, b = 7, c = – 4 là các số thực và a ≠ 0.

Các biểu thức khác không phải tam thức bậc hai vì:

+ Biểu thức A có chứa căn.

+ Biểu thức B có bậc là 4.

+ Biểu thức D chứa biến x ở dưới mẫu.

Hoạt động 2 trang 19 Toán 10 Tập 2: Cho hàm số bậc hai y = f(x) = x2 – 4x + 3.

a) Xác định hệ số a. Tính f(0), f(1), f(2), f(3), f(4) và nhận xét về dấu của chúng so với dấu của hệ số a.

b) Cho đồ thị hàm số y = f(x) (H.6.17). Xét trên từng khoảng (– ∞; 1), (1; 3), (3; +∞), đồ thị nằm phía trên hay nằm phía dưới trục Ox?

Giải Toán 10 Bài 17 (Kết nối tri thức): Dấu của tam thức bậc hai (ảnh 1) 

c) Nhận xét về dấu của f(x) và dấu của hệ số a trên từng khoảng đó.

Lời giải:

a) Hàm số bậc hai y = f(x) = x2 – 4x + 3.

Ta có hệ số a = 1 > 0.

f(0) = 02 – 4 . 0 + 3 = 3 > 0, f(0) cùng dấu với hệ số a.

f(1) = 12 – 4 . 1 + 3 = 0, f(1) không mang dấu.

f(2) = 22 – 4 . 2 + 3 = – 1 < 0, f(2) trái dấu với hệ số a.

f(3) = 32 – 4 . 3 + 3 = 0, f(3) không mang dấu.

f(4) = 42 – 4 . 4 + 3 = 3 > 0, f(4) cùng dấu với hệ số a.

b) Từ đồ thị H.6.17, ta có:

– Trên các khoảng (– ∞; 1) và (3; +∞), đồ thị hàm số nằm phía trên trục Ox.

– Trên khoảng (1; 3), đồ thị hàm số nằm phía dưới trục Ox.

c) Khi đồ thị hàm số nằm trên trục Ox thì f(x) > 0 và khi đồ thị hàm số nằm phía dưới trục Ox thì f(x) < 0.

Lại có hệ số a = 1 > 0.

Do đó, trên các khoảng (– ∞; 1) và (3; +∞), f(x) cùng dấu với hệ số a; trên khoảng (1; 3), f(x) trái dấu với hệ số a.

Hoạt động 3 trang 20 Toán 10 Tập 2: Cho đồ thị hàm số y = g(x) = – 2x^2 + x + 3 như Hình 6.18.

Giải Toán 10 Bài 17 (Kết nối tri thức): Dấu của tam thức bậc hai (ảnh 1) 

a) Xét trên từng khoảng (– ∞; – 1), −1;32, 32;+∞, đồ thị nằm phía trên trục Ox hay nằm phía dưới trục Ox?

b) Nhận xét về dấu của g(x) và dấu của hệ số a trên từng khoảng đó.

Lời giải:

a) Từ đồ thị ta có:

– Trên các khoảng (– ∞; – 1) và 32;+∞, đồ thị nằm phía dưới trục Ox.

– Trên khoảng −1;32, đồ thị nằm phía trên trục Ox.

b) Khi đồ thị hàm số nằm trên trục Ox thì g(x) > 0 và khi đồ thị hàm số nằm phía dưới trục Ox thì g(x) < 0.

Lại có hệ số a = – 2 < 0.

Do đó, trên các khoảng (– ∞; – 1) và 32;+∞, g(x) cùng dấu với hệ số a và trên khoảng −1;32, g(x) trái dấu với hệ số a.

Hoạt động 4 trang 20, 21 Toán 10 Tập 2: Nêu nội dung thay vào ô có dấu “?” trong bảng sau cho thích hợp.

• Trường hợp a > 0

∆

∆ < 0

∆ = 0

∆ > 0

Dạng đồ thị

Giải Toán 10 Bài 17 (Kết nối tri thức): Dấu của tam thức bậc hai (ảnh 1) 

Giải Toán 10 Bài 17 (Kết nối tri thức): Dấu của tam thức bậc hai (ảnh 1) 

Giải Toán 10 Bài 17 (Kết nối tri thức): Dấu của tam thức bậc hai (ảnh 1) 

Vị trí của đồ thị so với trục Ox

Đồ thị nằm hoàn toàn phía trên trục Ox.

Đồ thị nằm phía trên trục Ox và tiếp xúc với trục Ox tại điểm có hoành độ x=−b2a.

– Đồ thị nằm phía trên trục Ox khi x < x1 hoặc x > x2.

– Đồ thị nằm phía dưới trục Ox khi x1 < x < x2.

 

• Trường hợp a < 0

∆

∆ < 0

∆ = 0

∆ > 0

Dạng đồ thị

Giải Toán 10 Bài 17 (Kết nối tri thức): Dấu của tam thức bậc hai (ảnh 1) 

Giải Toán 10 Bài 17 (Kết nối tri thức): Dấu của tam thức bậc hai (ảnh 1) 

Giải Toán 10 Bài 17 (Kết nối tri thức): Dấu của tam thức bậc hai (ảnh 1) 

Vị trí của đồ thị so với trục Ox

?

?

?

 

Lời giải:

Quan sát dạng đồ thị, ta hoàn thành bảng như sau:

• Trường hợp a < 0

∆

∆ < 0

∆ = 0

∆ > 0

Dạng đồ thị

Giải Toán 10 Bài 17 (Kết nối tri thức): Dấu của tam thức bậc hai (ảnh 1) 

Giải Toán 10 Bài 17 (Kết nối tri thức): Dấu của tam thức bậc hai (ảnh 1) 

Giải Toán 10 Bài 17 (Kết nối tri thức): Dấu của tam thức bậc hai (ảnh 1) 

Vị trí của đồ thị so với trục Ox

Đồ thị nằm hoàn toàn phía dưới trục Ox.

Đồ thị nằm phía dưới trục Ox và tiếp xúc với trục Ox tại điểm có hoành độ x=−b2a.

– Đồ thị nằm phía dưới trục Ox khi x < x1 hoặc x > x2.

– Đồ thị nằm phía trên trục Ox khi x1 < x < x2.

Luyện tập 2 trang 22 Toán 10 Tập 2: Xét dấu các tam thức bậc hai sau:

a) – 3x2 + x −2;

b) x2 + 8x + 16;

c) – 2x2 + 7x – 3.

Lời giải:

a) Ta có: f(x) = – 3x2 + x −2 có ∆ = 12 – 4 . (– 3) . −2 = 1−122 < 0 và hệ số a = – 3 < 0 nên f(x) < 0 với mọi x ∈ ℝ.

b) Ta có: f(x) = x2 + 8x + 16 có ∆’ = 42 – 1 . 16 = 0 và hệ số a = 1 > 0 nên f(x) có nghiệm kép x = – 4 và f(x) > 0 với mọi x ≠ – 4.

c) f(x) = – 2x2 + 7x – 3 có ∆ = 72 – 4 . (– 2) . (– 3) = 25 > 0, hệ số a = – 2 < 0 và có hai nghiệm phân biệt x1 = 12; x2 = 3.

Ta lập bảng xét dấu f(x):

x

– ∞                  12                         3                      + ∞

f(x)

             –          0             +          0            –

 

Vậy f(x) > 0 với mọi x ∈12;  3 và f(x) < 0 với mọi x ∈ −∞;   12∪ (3; + ∞).

Hoạt động 5 trang 22 Toán 10 Tập 2: Trở lại tình huống mở đầu. Với yêu cầu mảnh đất được rào chắn có diện tích không nhỏ hơn 48 m2, hãy viết đẳng thức thể hiện sự so sánh biểu thức tính diện tích S(x) = – 2x2 + 20x với 48.

Lời giải:

Diện tích mảnh đất được rào chắn là S(x) = – 2x2 + 20x  (m2).

Do mảnh đất được rào chắn có diện tích không nhỏ hơn 48 m2, tức là S(x) phải lớn hơn hoặc bằng 48 hay S(x) ≥ 48.

Vậy – 2x2 + 20x ≥ 48.

Luyện tập 3 trang 23 Toán 10 Tập 2: Giải các bất phương trình bậc hai sau:

a) – 5x2 + x – 1 ≤ 0;

b) x2 – 8x + 16 ≤ 0;

c) x2 – x – 6 > 0.

Lời giải:

a) Tam thức f(x) = – 5x2 + x – 1 có ∆ =  12 – 4 . (– 5) . (– 1) = – 19 < 0, hệ số a = – 5 < 0 nên f(x) luôn âm, tức là – 5x2 + x – 1 < 0 với mọi x ∈ ℝ.

Suy ra bất phương trình – 5x2 + x – 1 ≤ 0 có tập nghiệm S = ℝ.

b) Tam thức f(x) = x2 – 8x + 16 có ∆’ = (– 4)2 – 1 . 16 = 0, hệ số a = 1 > 0 nên f(x) có nghiệm kép x = 4 và f(x) luôn dương với mọi x ≠ 4, tức là x2 – 8x + 16 > 0 với mọi x ≠ 4.

Suy ra bất phương trình x2 – 8x + 16 ≤ 0 có nghiệm duy nhất x = 4.

Vậy tập nghiệm của bất phương trình là S = {4}.

c) Tam thức f(x) = x2 – x – 6 có ∆ = (– 1)2 – 4 . 1 . (– 6) = 25 > 0 nên f(x) có hai nghiệm  x1 = – 2 và x2 = 3.

Mà hệ số a = 1 > 0, do đó ta có bảng xét dấu:

x

– ∞                  – 2                       3                      + ∞

f(x)

             +          0             –          0            +

Vậy tập nghiệm của bất phương trình là S = (– ∞; – 2) ∪ (3; + ∞).

Vận dụng trang 23 Toán 10 Tập 2: Độ cao so với mặt đất của một quả bóng được ném lên theo phương thẳng đứng được mô tả bởi hàm số bậc hai h(t) = – 4,9t2 + 20t + 1, ở độ cao h(t) tính bằng mét và thời gian t tính bằng giây. Trong khoảng thời điểm nào trong quá trình bay của nó, quả bóng sẽ ở độ cao trên 5 m so với mặt đất?

Lời giải:

Bóng đạt ở độ cao trên 5 m so với mặt đất tức là h(t) > 5.

Do đó, – 4,9t2 + 20t + 1 > 5 ⇔ – 4,9t2 + 20t – 4 > 0.  

Xét tam thức f(t) = – 4,9t2 + 20t – 4 có ∆’ = 102 – (– 4,9) . (– 4) = 80,4 > 0 nên f(t) có hai nghiệm t1 = −10+80,4−4,9=10−80,44,9 và t2 = −10−80,4−4,9=10+80,44,9.

Mà hệ số a = – 4,9 < 0 nên ta có bảng xét dấu:

t

– ∞                 10−80,44,9                       10+80,44,9                      + ∞

f(t)

               –              0                   +                   0                  –

 

Do đó tập nghiệm của bất phương trình trên là S = 10−80,44,9;10+80,44,9.

Vậy trong khoảng thời điểm 10−80,44,9;10+80,44,9 ≈ (0,21; 3,87) (giây) thì quả bóng sẽ ở độ cao trên 5 m so với mặt đất.

B. Bài tập

Bài 6.15 trang 24 Toán 10 Tập 2: Xét dấu các tam thức bậc hai sau:

a) 3x2 – 4x + 1;

b) x2 + 2x + 1;

c) – x2 + 3x – 2;

d) – x2 + x – 1.

Lời giải:

a) Xét tam thức f(x) = 3x2 – 4x + 1 có ∆’ = (– 2)2 – 3 . 1 = 1 > 0, hệ số a = 3 > 0 và có hai nghiệm phân biệt x1 = 13; x2 = 1.

Ta có bảng xét dấu f(x):

x

– ∞                   13                        1                     + ∞

f(x)

             +          0             –          0            +

 

Vậy f(x) > 0 khi x∈−∞;13∪1;+∞ và f(x) < 0 khi x∈13;1.

b) Xét tam thức f(x) = x2 + 2x + 1 có ∆’ = 12 – 1 . 1 = 0 và a > 1 nên f(x) có nghiệm kép x = – 1 và f(x) > 0 với mọi x ≠ – 1.  

c) Xét tam thức f(x) = – x2 + 3x – 2 có ∆ = 32 – 4 . (– 1) . (– 2) = 1 > 0, hệ số a = – 1 < 0 và có hai nghiệm phân biệt x1 = 1; x2 = 2.

Ta có bảng xét dấu f(x):

x

– ∞                   1                        2                     + ∞

f(x)

             –          0           +          0            –

 

Vậy f(x) < 0 khi x ∈ (– ∞; 1) ∪ (2; + ∞) và f(x) > 0 khi x ∈ (1; 2).  

d) Xét tam thức f(x) = – x2 + x – 1 có ∆ = 12 – 4 . (– 1) . (– 1) = – 3 < 0 và hệ số a = – 1 < 0 nên f(x) < 0 với mọi x ∈ ℝ.

Bài 6.16 trang 24 Toán 10 Tập 2: Giải các bất phương trình bậc hai:

a) x2 – 1 ≥ 0;

b) x2 – 2x – 1 < 0;

c) – 3x2 + 12x + 1 ≤ 0;

d) 5x2 + x + 1 ≥ 0.

Lời giải:

a) Tam thức f(x) = x2 – 1 có ∆ = 02 – 4 . 1 . (– 1) = 4 > 0 nên f(x) có hai nghiệm x1 = – 1 và x2 = 1.

Vì hệ số a = 1 > 0 nên ta có bảng xét dấu f(x):

x

– ∞                  – 1                      1                     + ∞

f(x)

             +           0           –          0            +

 

Vậy tập nghiệm của bất phương trình là S = (– ∞; – 1] ∪ [1; + ∞).

b) Tam thức f(x) = x2 – 2x – 1 có ∆’ = (– 1)2 – 1 . (– 1) = 2 > 0 nên f(x) có hai nghiệm x1 = 1 −2 và x2 = 1 + 2.

Vì hệ số a = 1 > 0 nên ta có bảng xét dấu f(x):

x

– ∞                1 −2                   1 + 2                     + ∞

f(x)

             +            0             –            0                +

Vậy tập nghiệm của bất phương trình là S = 1−2; 1+2.

c) Tam thức f(x) = – 3x2 + 12x + 1 có ∆’ = 62 – (– 3) . 1 = 39 > 0 nên f(x) có hai nghiệm x1=6−393 và x2=6+393.

Vì hệ số a = – 3 < 0 nên ta có bảng xét dấu f(x):

x

– ∞                6−393                   6+393                  + ∞

f(x)

             –             0              +             0                –

Vậy tập nghiệm của bất phương trình là S = −∞;6−393∪6+393;+∞.

d) Tam thức f(x) = 5x2 + x + 1 có ∆ = 12 – 4 . 5 . 1 = – 19 < 0 và hệ số a = 5 > 0 nên f(x) luôn dương (cùng dấu a) với mọi x ∈ ℝ.

Vậy tập nghiệm của bất phương trình là S = ℝ.

Bài 6.17 trang 24 Toán 10 Tập 2: Tìm các giá trị của tham số m để tam thức bậc hai sau dương với mọi x ∈ ℝ:

x2 + (m + 1)x + 2m + 3.

Lời giải:

Xét tam thức f(x) = x2 + (m + 1)x + 2m + 3.

Ta có: ∆ = (m + 1)2 – 4 . 1 . (2m + 3) = m2 + 2m + 1 – 8m – 12 = m2 – 6m – 11.

Mặt khác, hệ số a = 1 > 0.

Do đó, để f(x) luôn dương (cùng dấu hệ số a) với mọi x ∈ ℝ thì ∆ < 0

⇔ m2 – 6m – 11 < 0.

Xét tam thức g(m) = m2 – 6m – 11 có ∆’g = (– 3)2 – 1 . (– 11) = 20 > 0 nên g(m) có hai nghiệm m1 = 3−25 và m2 = 3+25.

Vì hệ số ag = 1 > 0 nên ta có bảng xét dấu g(m):

m

– ∞                3−25                   3+25                  + ∞

g(m)

             +             0              –             0                +

Khi đó g(m) < 0 với mọi m ∈3−25; 3+25.

Hay ∆ < 0 với mọi m ∈3−25; 3+25.

Vậy m ∈3−25; 3+25 thì tam thức bậc hai đã cho luôn dương với mọi x ∈ ℝ.

Bài 6.18 trang 24 Toán 10 Tập 2: Một vật được ném theo phương thẳng đứng xuống dưới từ độ cao 320 m với vận tốc ban đầu v0 = 20 m/s. Hỏi sau ít nhất bao nhiêu giây, vật đó cách mặt đất không quá 100 m? Giả thiết rằng sức cản của không khí là không đáng kể.

Lời giải:

Độ cao của vật so với mặt đất được mô tả bởi công thức

h(t) = h0 + v0t – 12gt2,

trong đó v0 = 20 m/s là vận tốc ban đầu của vật, t là thời gian chuyển động tính bằng giây, g là gia tốc trọng trường (thường lấy g ≈ 9,8 m/s2) và độ cao h(t) tính bằng mét.  

Khi đó ta có: h(t) = 320 + 20t – 12 . 9,8 . t2 hay h(t) = –  4,9t2 + 20t + 320, đây là một hàm số bậc hai.  

Vật cách mặt đất không quá 100 m khi và chỉ khi h(t) ≤ 100, tức là – 4,9t2 + 20t + 320 ≤ 100 hay tương đương 4,9t2 – 20t – 220 ≥ 0 (1).

Xét tam thức f(t) = 4,9t2 – 20t – 220 có ∆’ = (– 10)2 – 4,9 . (– 220) = 1 178 > 0 nên f(t) có hai nghiệm t1=10−11784,9 và t2=10+11784,9.

Mà hệ số af = 4,9 > 0 nên ta có bảng xét dấu f(t):

t

– ∞                10−11784,9                   10+11784,9               + ∞

f(t)

             +             0              –                0                +

Suy ra bất phương trình (1) có nghiệm t ≤ 10−11784,9 hoặc t ≥ 10+11784,9.

Mà thời gian t > 0 nên t ≥ 10+11784,9≈ 9,05.

Vậy sau ít nhất khoảng 9,05 giây thì vật đó cách mặt đất không quá 100 m.

Bài 6.19 trang 24 Toán 10 Tập 2: Xét đường tròn đường kính AB = 4 và một điểm M di chuyển trên đoạn AB, đặt AM = x (H.6.19). Xét hai đường tròn đường kính AM và MB. Kí hiệu S(x) diện tích phần hình phẳng nằm trong hình tròn lớn và nằm ngoài hai hình tròn nhỏ. Xác định các giá trị của x để diện tích S(x) không vượt quá một nửa tổng diện tích hai hình tròn nhỏ.

Giải Toán 10 Bài 17 (Kết nối tri thức): Dấu của tam thức bậc hai (ảnh 1) 

Lời giải:

Do M di chuyển trên đoạn AB và AM = x nên x ≥ 0 (xảy ra trường hợp bằng 0 khi M trùng A), lại có AM ≤ AB (dấu bằng xảy ra khi M trùng B) nên x ≤ 4, vậy điều kiện của x là 0 ≤ x ≤ 4.

Gọi S, S1, S2 lần lượt là diện tích hình tròn đường kính AB, AM và MB.

Đường tròn lớn có đường kính AB = 4 nên bán kính của hình tròn này là R = 2.

Diện tích hình tròn đường kính AB là S = πR2 = π . 22 = 4π.  

Đường tròn đường kính AM = x có bán kính là r1 = x2.

Diện tích hình tròn đường kính AM là S1 = πr12 = π.x22=x24π.

Ta có: AM + MB = AB (do M nằm trên đoạn AB) ⇒ MB = AB – AM = 4 – x.

Đường tròn đường kính MB có bán kính là r2 = 4−x2.

Diện tích hình tròn đường kính MB là S2 = πr22 = π.4−x22=4−x24π.

Tổng diện tích hai hình tròn đường kính AM và MB là:

S12= S1 + S2 = x24π+4−x24π = x2+4−x24π=x2−4x+82π.

Diện tích phần hình phẳng nằm trong hình tròn lớn (hình tròn đường kính AB) và nằm ngoài hai hình tròn nhỏ (hình tròn đường kính AM và MB) là

S(x) = S – S12 = 4π−x2−4x+82π=−x2+4x2π.

Do diện tích S(x) không vượt quá một nửa tổng diện tích hai hình tròn nhỏ hay diện tích S(x) nhỏ hơn hoặc bằng nửa tổng diện tích hai hình tròn nhỏ hay S(x) ≤ 12S12.

Khi đó ta có: −x2+4x2π≤12.x2−4x+82π

⇔−x2+4x≤x2−4x+82

⇔ – 2×2 + 8x ≤ x2 – 4x + 8

⇔ 3×2 – 12x + 8 ≥ 0

Xét tam thức f(x) = 3×2 – 12x + 8 có ∆’ = (– 6)2 – 3 . 8 = 12 > 0 nên f(x) có hai nghiệm x1 = 6−233 và x2 = 6+233.

Mà hệ số af = 3 > 0 nên ta có bảng xét dấu f(x):

x

– ∞                6−233                   6+233                  + ∞

f(x)

             +             0              –             0                +

 

Từ đó suy ra f(x) ≥ 0 với mọi x∈−∞;6−233∪6+233;+∞.

Kết hợp với điều kiện 0 ≤ x ≤ 4.

Vậy x∈0;6−233∪6+233;4.

Xem thêm các bài giải SGK Toán 10 Kết nối tri thức hay, chi tiết khác:

Bài 16 : Hàm số bậc hai

Bài 18: Phương trình quy về phương trình bậc hai

Bài tập cuối chương 6

Bài 19: Phương trình đường thẳng

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Bộ 10 đề thi giữa kì 1 Kinh tế Pháp luật 11 Cánh diều có đáp án năm 2023

Next post

Sách bài tập Toán 6 (Kết nối tri thức) Ôn tập chương 7

Bài liên quan:

20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10

Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10

Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới

Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10

Trắc nghiệm Toán 10 Kết nối tri thức có đáp án

Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)

Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10

Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề

Leave a Comment Hủy

Mục lục

  1. 20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  2. Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  3. Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới
  4. Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10
  5. Trắc nghiệm Toán 10 Kết nối tri thức có đáp án
  6. Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)
  7. Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10
  8. Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề
  9. Giáo án Toán 10 Kết nối tri thức (cả năm) mới nhất 2023
  10. Chuyên đề Toán 10 Kết nối tri thức | Giải bài tập Chuyên đề học tập Toán 10 hay, chi tiết
  11. Sách bài tập Toán 10 Kết nối tri thức | Giải SBT Toán 10 | Giải sách bài tập Toán 10 Tập 1, Tập 2 hay nhất | SBT Toán 10 Kết nối tri thức | SBT Toán 10 KNTT
  12. Tổng hợp Lý thuyết Toán lớp 10 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 10 | Tổng hợp kiến thức Toán 10 chương trình mới
  13. Giải sgk Toán 10 Kết nối tri thức | Giải Toán 10 | Giải Toán lớp 10 | Giải bài tập Toán 10 hay nhất | Giải Toán 10 Tập 1, Tập 2 Kết nối tri thức
  14. Sách bài tập Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  15. Giải SGK Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  16. 20 câu Trắc nghiệm Tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  17. Lý thuyết Tập hợp và các phép toán trên tập hợp (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  18. Bài giảng điện tử Tập hợp và các phép toán trên tập hợp | Kết nối tri thức Giáo án PPT Toán 10
  19. Giáo án Toán 10 Bài 2 (Kết nối tri thức 2023): Tập hợp và các phép toán trên tập hợp
  20. Sách bài tập Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  21. Giải SGK Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  22. 30 câu Trắc nghiệm Chương 1: Mệnh đề và tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  23. Lý thuyết Toán 10 Chương 1 (Kết nối tri thức 2023): Mệnh đề và Tập hợp hay, chi tiết
  24. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 1
  25. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  26. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  27. 20 câu Trắc nghiệm Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  28. Lý thuyết Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  29. Bài giảng điện tử Bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  30. Giáo án Toán 10 Bài 3 (Kết nối tri thức 2023): Bất phương trình bậc nhất hai ẩn
  31. Sách bài tập Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
  32. Giải SGK Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
  33. Lý thuyết Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  34. Bài giảng điện tử Hệ bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  35. Giáo án Toán 10 Bài 4 (Kết nối tri thức 2023): Hệ bất phương trình bậc nhất hai ẩn
  36. 20 câu Trắc nghiệm Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  37. Sách bài tập Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  38. Giải SGK Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  39. Lý thuyết Toán 10 Chương 2 (Kết nối tri thức 2023): Bất phương trình và hệ phương trình bậc nhất hai ẩn hay, chi tiết
  40. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 2
  41. 30 câu Trắc nghiệm Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  42. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  43. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  44. Lý thuyết Giá trị lượng giác của một góc từ 0 đến 180 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  45. Bài giảng điện tử Giá trị lượng giác của một góc từ 0 độ đến 180 độ | Kết nối tri thức Giáo án PPT Toán 10
  46. Giáo án Toán 10 Bài 5 (Kết nối tri thức 2023): Giá trị lượng giác của một góc từ 0 độ đến 180 độ
  47. 20 câu Trắc nghiệm Giá trị lượng giác của 1 góc từ 0° đến 180° (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  48. Sách bài tập Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0° đến 180°
  49. Giải SGK Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0 đến 180
  50. Lý thuyết Hệ thức lượng trong tam giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  51. Bài giảng điện tử Hệ thức lượng trong tam giác | Kết nối tri thức Giáo án PPT Toán 10
  52. Giáo án Toán 10 Bài 6 (Kết nối tri thức 2023): Hệ thức lượng trong tam giác

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán