Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 10

Giải SGK Toán 10 Bài 19 (Kết nối tri thức): Phương trình đường thẳng

By admin 14/10/2023 0

Giải bài tập Toán lớp 10 Bài 19: Phương trình đường thẳng

A. Câu hỏi

Hoạt động 1 trang 31 Toán 10 Tập 2: Cho vectơ n→ ≠0→ và điểm A. Tìm tập hợp những điểm M sao cho AM→ vuông góc với n→.

Giải Toán 10 Bài 19 (Kết nối tri thức): Phương trình đường thẳng (ảnh 1) 

Lời giải:

Vẽ đường thẳng d đi qua điểm A sao cho đường thẳng d vuông góc với giá của vectơ n→.

Lấy điểm M thuộc đường thẳng d thì AM→ vuông góc với n→.

Vậy tập hợp những điểm M sao cho AM→ vuông góc với n→ là đường thẳng d đi qua điểm A và vuông góc với giá của vectơ n→.

Hoạt động 2 trang 31 Toán 10 Tập 2: Trong mặt phẳng toạ độ, cho đường thẳng ∆ đi qua điểm A(x0; y0) và có vectơ pháp tuyến n→(a; b). Chứng minh rằng điểm M(x; y) thuộc ∆ khi và chỉ khi

a(x – x0) + b(y – y0) = 0

Lời giải:

* Giả sử M(x; y) thuộc đường thẳng ∆, ta cần chứng minh: a(x – x0) + b(y – y0) = 0

Vì M ∈ ∆ nên AM→⊥n→

⇒AM→. n→ = 0

Mà AM→ = (x – x0; y – y0) và n→(a; b)

⇒ a(x – x0)  + b(y – y0) = 0 (đpcm) (1)

* Giả sử, với M(x; y) thỏa mãn a(x – x0) + b(y – y0) = 0; ta cần chứng minh M thuộc đường thẳng ∆

Theo giả thiết ta có: a(x – x0) + b(y – y0) = 0

Mà AM→ = (x – x0; y – y0) và n→(a; b)

Nên AM→. n→ = 0 hay AM→⊥n→

Do đó n→ là vectơ pháp tuyến của đường thẳng AM

Mặt khác n→ cũng là vectơ pháp tuyến của đường thẳng ∆

Suy ra đường thẳng AM và đường thẳng ∆ có giá song song hoặc trùng nhau.

Vì đường thẳng ∆ đi qua A nên đường thẳng AM trùng ∆.

Hay điểm M cũng thuộc đường thẳng ∆ (đpcm) (2)

Từ (1) và (2) ta có: điểm M(x; y) thuộc ∆ khi và chỉ khi a(x – x0) + b(y – y0) = 0.

Luyện tập 1 trang 32 Toán 10 Tập 2: Trong mặt phẳng toạ độ , cho tam giác có 3 đỉnh A(-1; 5) , B( 2; 3), C(6; 1). Lập phương trình tổng quát của đường cao kẻ từ A của tam giác ABC.

Lời giải:

Gọi H là chân đường cao kẻ từ điểm A xuống BC.

Do đó: AH ⊥ BC hay ta có đường thẳng AH nhận BC→ làm vectơ pháp tuyến.

Ta có BC→= (4 ; -2)

Lấy n→= 12BC→= (2 ; -1). Khi đó n→ cũng là một vectơ pháp tuyến của đường thẳng AH.

Phương trình đường thẳng AH đi qua A(-1; 5) và nhận n→= (2 ; -1) làm VTPT là:

2.[x – (-1)] – 1.(y – 5) = 0

 ⇔ 2x + 2 – y + 5  = 0 hay 2x – y + 7 = 0.

Vậy phương trình đường cao kẻ từ A của tam giác ABC là: 2x – y + 7 = 0.

Luyện tập 2 trang 32 Toán 10 Tập 2: Hãy chỉ ra một vectơ pháp tuyến của đường thẳng ∆ : y = 3x + 4.

Lời giải:

Theo giả thiết ta có phương trình đường thẳng ∆ có dạng y = 3x + 4 hay 3x – y + 4 = 0

Vậy vectơ pháp tuyến của ∆ là n→(3; -1).

Hoạt động 3 trang 32 Toán 10 Tập 2: Trong Hình 7.2a , nếu một vật thể chuyển động với vectơ vận tốc bằng v→và nó đi qua điểm A thì nó di chuyển trên đường nào?

Giải Toán 10 Bài 19 (Kết nối tri thức): Phương trình đường thẳng (ảnh 1) 

Lời giải:

Ta có v→ có giá song song với đường thẳng ∆2 và điểm A thuộc đường thẳng ∆2 nên nếu một vật thể chuyển động với vectơ vận tốc bằng v→và nó đi qua điểm A thì nó di chuyển trên đường ∆2.

Luyện tập 3 trang 33 Toán 10 Tập 2: Hãy chỉ ra một vectơ chỉ phương của đường thẳng ∆ : 2x – y + 1 = 0.

Lời giải:

Xét phương trình đường thẳng ∆ : 2x – y + 1 = 0 ta có vectơ pháp tuyến n→(2; -1)

Vậy vectơ chỉ phương u→(1; 2).

Hoạt động 4 trang 33 Toán 10 Tập 2: Chuyển động của một vật thể được thể hiện trên mặt phẳng Oxy. Vật thể khởi hành từ A(2; 1) và chuyển động thẳng đều với vận tốc v→(3; 4).

a) Hỏi vật thể chuyển động trên đường thẳng nào (chỉ ra điểm đi qua và vectơ chỉ phương của đường thẳng đó).

b) Chứng minh rằng tại thời điểm t (t > 0) tính từ khi khởi hành, vật thể ở vị trí có toạ độ là (2 + 3t; 1 + 4t).

Lời giải:

a) Vật thể sẽ chuyển động trên đường thẳng đi qua A và song song hoặc trùng với giá vectơ vận tốc v→(3; 4)

Hay đường thẳng đi qua điểm A và có vectơ chỉ phương là v→(3; 4).

b) Gọi B(x; y) là vị trí của vật thể tại thời điểm t (t > 0).

Vật thể đó chuyển động từ A đến B, nghĩa là quãng đường đi được là AB có thể xem là vectơ vận tốc là vectơ  AB→.

Quãng đường AB bằng độ lớn vận tốc nhân thời gian nên ta có: AB = t.v→ mà vectơ  AB→ cùng hướng với v→ nên AB→= t .v→.

Ta có: AB→ = (x – 2; y – 1)

⇒ (x – 2; y – 1) = (3t; 4t)

⇒ x−2=3ty−1=4t

⇔x=2+3ty=1+4t

Vậy toạ độ B(2 + 3t; 1+4t) là vị trí của vật thể tại thời điểm t(t > 0).

Luyện tập 4 trang 33 Toán 10 Tập 2: Lập phương trình tham số của đường thẳng ∆ đi qua điểm M(-1; 2) và song song với đường thẳng d: 3x – 4y – 1 = 0.

Lời giải:

Theo giả thiết ta có phương trình của đường thẳng d: 3x – 4y – 1 = 0 nên d có vectơ pháp tuyến n→(3; -4) hay vectơ chỉ phương của đường thẳng d u→(4; 3)

Vì đường thẳng ∆ song song với đường thẳng d nên đường thẳng ∆ nhận u→(4; 3) làm vectơ chỉ phương.

Vậy phương trình tham số của đường thẳng ∆ đi qua điểm M(-1; 2) và nhận u→(4; 3) làm vectơ chỉ phương là: x=−1+4ty=2+3t.

Luyện tập 5 trang 33 Toán 10 Tập 2: Lập phương trình tham số và phương trình tổng quát của đường thẳng đi qua hai điểm phân biệt A(x1; y1), B(x2; y2) cho trước.

Lời giải:

Ta có: AB→= (x2 – x1; y2 – y1).

Đường thẳng AB đi qua điểm A(x1; y1) và có vectơ chỉ phương AB→= (x2 – x1; y2 – y1) do đó phương trình tham số là :

x=x1+(x2−x1)ty=y1+(y2−y1)t

Đường thẳng AB có vectơ chỉ phương AB→= (x2 – x1; y2 – y1) , do đó có vectơ pháp tuyến là: n→= (y1 – y2; x2 – x1)

Vậy phương trình tổng quát của đường thẳng AB là:

(y1 – y2)(x – x1) + (x2 – x1)(y – y1) = 0

⇔ (y1 – y2)x + (x2 – x1)y – y1x1 + y2x1 – x2y1 + x1y1 = 0

⇔ (y1 – y2)x + (x2 – x1)y + y2x1 –  x2y1 = 0.

Vậy phương trình tham số của đường thẳng AB là x=x1+(x2−x1)ty=y1+(y2−y1)t, phương trình tổng quát của đường thẳng AB là (y1 – y2)x + (x2 – x1)y + y2x1 –  x2y1 = 0.

Vận dụng trang 34 Toán 10 Tập 2: Việc quy đổi nhiệt độ giữa đơn vị độ C (Anders Celsius, 1701 – 1744) và đơn vị độ F (Daniel Fahrenheit, 1686 – 1736) được xác định bởi hai mốc sau:

Nước đóng băng ở 0ºC; 32ºF

Nước sôi ở 100ºC; 212ºF

Trong quy đổi đó, nếu aºC tương ứng với bºF thì trên mặt phẳng toạ độ Oxy, điểm M(a; b) thuộc đường thẳng đi qua A(0; 32) và B(100; 212). Hỏi 0ºF, 100ºF tương ứng với bao nhiêu độ C?

Lời giải:

Ta có: AB→= (100; 180)

Đường thẳng AB đi qua điểm A(0; 32) và có vectơ chỉ phương u→=120AB→= (5; 9) do đó vectơ pháp tuyến n→= (-9; 5). Vậy phương trình tổng quát là :

-9(x – 0) + 5(y – 32) = 0

⇔ –9x + 5y – 160 = 0

+ Với 0ºF tương ứng với y = 0 ta có: –9x + 5.0 – 160 = 0 suy ra x ≈ –17, 78

Suy ra 0ºF tương ứng với –17,78ºC.

+ Với 100ºF tương ứng với y = 100 ta có: –9x + 5.100 – 160 = 0 suy ra x ≈ 37,78

Suy ra 0ºF tương ứng với 37,78ºC.

Vậy 0°F tương ứng với  -17,78°C và 100°F tương ứng với  -37,78°C.

B. Bài tập

Bài 7.1 trang 34 Toán 10 Tập 2: Trong mặt phẳng toạ độ, cho n→= (2; 1) , v→= (3; 2), A(1; 3), B(-2; 1).

a) Lập phương trình tổng quát của đường thẳng ∆1 đi qua A và có vectơ pháp tuyến n→.

b) Lập phương trình tham số của đường thẳng ∆2 đi qua B và có vectơ chỉ phương v→.

c) Lập phương trình tham số của đường thẳng AB.

Lời giải:

a) Phương trình tổng quát của đường thẳng ∆1 đi qua A(1; 3) và có vectơ pháp tuyến n→= (2; 1) là: 2(x – 1) + 1(y – 3) = 0

⇔ 2x – 2 + y – 3 = 0

⇔ 2x + y – 5 = 0

Vậy phương trình tổng quát của đường thẳng ∆1 là 2x + y – 5 = 0.

b) Phương trình tham số của đường thẳng ∆2 đi qua B(-2; 1) và có vectơ chỉ phương v→= (3; 2) là: x=−2+3ty=1+2t.

Vậy phương trình tham số của đường thẳng ∆2 là x=−2+3ty=1+2t.

c) Ta có: BA→= (3; 2)

Phương trình tham số của đường thẳng AB đi qua B(-2; 1) và có vectơ chỉ phương BA→= (3; 2) là: x=−2+3ty=1+2t.

Vậy phương trình tham số của đường thẳng AB là x=−2+3ty=1+2t.

Bài 7.2 trang 34 Toán 10 Tập 2: Lập phương trình tổng quát của các trục toạ độ

Lời giải:

* Phương trình tổng quát của trục Ox đi qua điểm O(0; 0) và nhận vectơ đơn vị j→(0;1) làm VTPT là: 0.(x – 0) + 1.(y – 0) = 0 hay y = 0 .

* Phương trình tổng quát của trục Oy đi qua điểm O(0; 0) và nhận vectơ đơn vị i→(1; 0) làm VTPT là: 1.(x – 0) + 0.(y – 0) = 0 hay x = 0.

Bài 7.3 trang 34 Toán 10 Tập 2: Cho hai đường thẳng ∆1: x=1+2ty=3+5t và ∆2: 2x + 3y – 5 = 0.

a) Lập phương trình tổng quát của ∆1.

b) Lập phương trình tham số của ∆2.

Lời giải:

a) Đường thẳng ∆1 có vectơ chỉ phương là u1→(2; 5), do đó đường thẳng ∆1 có vectơ pháp tuyến là n1→(5; -2).

Lấy A(1; 3) là một điểm thuộc đường thẳng ∆1

Suy ra phương trình tổng quát của ∆1 đi qua điểm A(1; 3) và có vectơ pháp tuyến là n1→(5; -2) là: 5(x – 1) – 2(y – 3) = 0 ⇔ 5x – 5 – 2y + 6 = 0 hay 5x – 2y + 1 = 0.

Vậy

b) Đường thẳng ∆2 có vectơ pháp tuyến là n2→(2; 3), do đó đường thẳng ∆1 có vectơ chỉ phương là u2→(3; -2)

Lấy M(1; 1) thuộc đường thẳng ∆2: 2x + 3y – 5 = 0.

Do đó đường thẳng ∆2 đi qua điểm M(1; 1) nhận vectơ u2→(3; -2) là vectơ chỉ phương, phương trình tham số của ∆2 là: x=1+3ty=1−2t

Bài 7.4 trang 34 Toán 10 Tập 2: Trong mặt phẳng toạ độ, cho tam giác ABC có A(1; 2); B(3; 0) và C(-2; -1)

a) Lập phương trình đường cao kẻ từ A

b) Lập phương trình đường trung tuyến kẻ từ B

Lời giải:

a) Gọi H là chân đường cao kẻ từ A xuống BC

Ta có : AH ⊥ BC nên đường thẳng AH nhận CB→= (5; 1) làm vectơ pháp tuyến

Suy ra phương tổng quát của đường thẳng AH đi qua điểm A(1; 2) và nhận CB→= (5; 1) làm VTPT là:

5(x – 1) + 1(y – 2) = 0

⟺ 5x – 5 + y – 2 = 0 hay 5x + y – 7 = 0.

Vậy phương trình đường cao kẻ từ A là 5x + y – 7 = 0.

b) Gọi M là trung điểm của AC

Ta có, toạ độ của điểm M là: xM=xA+xC2yM=yA+yC2  

                                         ⇔xM=1−22=−12yM=2−12=12 

⇒ M −12;12

⇒MB→=72;−12

Lấy u→= 2MB→= (7 ; -1). Khi đó u→ là một vectơ chỉ phương của đường thẳng BM.

Đường thẳng BM đi qua điểm B(3; 0) và nhận u→(7; -1) làm vectơ chỉ phương, phương trình tham số của đường thẳng BM là: x=3+7ty=−t.

Vậy phương trình tham số của đường trung tuyến kẻ từ B là: x=3+7ty=−t.

Bài 7.5 trang 34 Toán 10 Tập 2: (Phương trình đoạn chắn của đường thẳng)

Chứng minh rằng, đường thẳng đi qua hai điểm A(a; 0), B(0; b) với ab ≠ 0 (H7.3) có phương trình là: xa+yb=1

Giải Toán 10 Bài 19 (Kết nối tri thức): Phương trình đường thẳng (ảnh 1) 

Lời giải:

Ta có: AB→= (-a; b)

Đường thẳng AB nhận AB→= (-a; b) làm vectơ chỉ phương, do đó vectơ pháp tuyến là: n→(b; a)

Vậy phương trình tổng quát của đường thẳng AB đi qua điểm A (a; 0) và có vectơ pháp tuyến n→(b; a) là: b(x – a) + a(y – 0) = 0

⇔ bx + ay – ab = 0   (1)

Vì ab ≠ 0 nên chia cả 2 vế của (1) cho tích ab ta được: xa+yb−1=0 hay xa+yb=1.

Vậy phương trình đường thẳng AB là: xa+yb=1.

Bài 7.6 trang 34 Toán 10 Tập 2: Theo Google Maps, sân bay Nội  Bài có vĩ độ 21,2º Bắc, kinh độ 105,8º Đông, sân bay Đà Nẵng có vĩ độ 16,1º Bắc, kinh độ 108,2º Đông. Một máy bay bay từ sân bay Nội Bài đến sân bay Đà Nẵng. Tại thời điểm t giờ, tính từ lúc xuất phát, máy bay ở vị trí có vĩ độ xº Bắc , kinh độ yº Đông được tính theo công thức:

x=21,2−15340ty=105,8+95t

a) Hỏi chuyến bay từ Hà Nội đến Đà Nẵng mất mấy giờ?

b) Tại thời điểm 1 giờ kể từ lúc cất cánh máy bay đã bay qua vĩ tuyến 17 (17º Bắc) chưa?

Lời giải:

a) Tại sân bay Đà Nẵng có vĩ độ 16,1° Bắc, kinh độ 108,2° Đông tương ứng với x = 16,1; y = 108,2

Theo giả thiết ta có: 16,1=21,2−15340t108,2=105,8+95t ⇒ t = 43

Vậy chuyến bay từ Hà Nội đến Đà Nẵng mất 43 giờ.

b) Tại thời điểm 1 giờ tương ứng với t = 1 ta có: x=21,2−15340.1y=105,8+95.1 ⇒ x=17,375y=107,6

Tại thời điểm 1 giờ kể từ lúc cất cánh máy bay ở vị trí có vĩ độ 17,375º Bắc , kinh độ 107,6º Đông

Vậy tại thời điểm 1 giờ kể từ lúc cất cánh máy bay đã bay qua vĩ tuyến 17 (17º Bắc).

Xem thêm các bài giải SGK Toán 10 Kết nối tri thức hay, chi tiết khác:

Bài tập cuối chương 6

Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách

Bài 21: Đường tròn trong mặt phẳng tọa độ

Bài 22: Ba đường Conic

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giải SGK Toán lớp 6 Bài 35 (Kết nối tri thức): Trung điểm của đoạn thẳng

Next post

Sách bài tập Toán 6 Bài 35 (Kết nối tri thức): Trung điểm của đoạn thẳng

Bài liên quan:

20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10

Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10

Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới

Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10

Trắc nghiệm Toán 10 Kết nối tri thức có đáp án

Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)

Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10

Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề

Leave a Comment Hủy

Mục lục

  1. 20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  2. Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  3. Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới
  4. Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10
  5. Trắc nghiệm Toán 10 Kết nối tri thức có đáp án
  6. Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)
  7. Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10
  8. Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề
  9. Giáo án Toán 10 Kết nối tri thức (cả năm) mới nhất 2023
  10. Chuyên đề Toán 10 Kết nối tri thức | Giải bài tập Chuyên đề học tập Toán 10 hay, chi tiết
  11. Sách bài tập Toán 10 Kết nối tri thức | Giải SBT Toán 10 | Giải sách bài tập Toán 10 Tập 1, Tập 2 hay nhất | SBT Toán 10 Kết nối tri thức | SBT Toán 10 KNTT
  12. Tổng hợp Lý thuyết Toán lớp 10 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 10 | Tổng hợp kiến thức Toán 10 chương trình mới
  13. Giải sgk Toán 10 Kết nối tri thức | Giải Toán 10 | Giải Toán lớp 10 | Giải bài tập Toán 10 hay nhất | Giải Toán 10 Tập 1, Tập 2 Kết nối tri thức
  14. Sách bài tập Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  15. Giải SGK Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  16. 20 câu Trắc nghiệm Tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  17. Lý thuyết Tập hợp và các phép toán trên tập hợp (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  18. Bài giảng điện tử Tập hợp và các phép toán trên tập hợp | Kết nối tri thức Giáo án PPT Toán 10
  19. Giáo án Toán 10 Bài 2 (Kết nối tri thức 2023): Tập hợp và các phép toán trên tập hợp
  20. Sách bài tập Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  21. Giải SGK Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  22. 30 câu Trắc nghiệm Chương 1: Mệnh đề và tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  23. Lý thuyết Toán 10 Chương 1 (Kết nối tri thức 2023): Mệnh đề và Tập hợp hay, chi tiết
  24. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 1
  25. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  26. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  27. 20 câu Trắc nghiệm Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  28. Lý thuyết Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  29. Bài giảng điện tử Bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  30. Giáo án Toán 10 Bài 3 (Kết nối tri thức 2023): Bất phương trình bậc nhất hai ẩn
  31. Sách bài tập Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
  32. Giải SGK Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
  33. Lý thuyết Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  34. Bài giảng điện tử Hệ bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  35. Giáo án Toán 10 Bài 4 (Kết nối tri thức 2023): Hệ bất phương trình bậc nhất hai ẩn
  36. 20 câu Trắc nghiệm Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  37. Sách bài tập Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  38. Giải SGK Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  39. Lý thuyết Toán 10 Chương 2 (Kết nối tri thức 2023): Bất phương trình và hệ phương trình bậc nhất hai ẩn hay, chi tiết
  40. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 2
  41. 30 câu Trắc nghiệm Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  42. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  43. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  44. Lý thuyết Giá trị lượng giác của một góc từ 0 đến 180 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  45. Bài giảng điện tử Giá trị lượng giác của một góc từ 0 độ đến 180 độ | Kết nối tri thức Giáo án PPT Toán 10
  46. Giáo án Toán 10 Bài 5 (Kết nối tri thức 2023): Giá trị lượng giác của một góc từ 0 độ đến 180 độ
  47. 20 câu Trắc nghiệm Giá trị lượng giác của 1 góc từ 0° đến 180° (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  48. Sách bài tập Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0° đến 180°
  49. Giải SGK Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0 đến 180
  50. Lý thuyết Hệ thức lượng trong tam giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  51. Bài giảng điện tử Hệ thức lượng trong tam giác | Kết nối tri thức Giáo án PPT Toán 10
  52. Giáo án Toán 10 Bài 6 (Kết nối tri thức 2023): Hệ thức lượng trong tam giác

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán