Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 10

Lý thuyết Biểu thức tọa độ của các phép toán vectơ (Cánh diều 2023) hay, chi tiết | Toán lớp 10

By admin 17/10/2023 0

Lý thuyết Toán lớp 10 Bài 2: Biểu thức tọa độ của các phép toán vectơ

A. Lý thuyết

I. Biểu thức tọa độ của phép cộng hai vectơ, phép trừ hai vectơ, phép nhân một số với một vectơ

Nếu u→ = (x1 ; y1) và v→ = (x2 ; y2) thì

u→ + v→ = ( x1 + x2 ; y1 + y2);

u→ – v→ = ( x1 – x2 ; y1 – y2);

ku→ = (kx1; ky1) với k ∈ ℝ.

Ví dụ: Cho hai vectơ u→ = (– 5 ; 1) và v→ = (2 ; –3). Tìm tọa độ của mỗi vectơ sau:

a) u→ + v→;

b) u→ – v→;

c) –2v→.

Hướng dẫn giải

a) Ta có: u→ + v→ = (–5 + 2 ; 1 + (–3)) = (–3 ; –2).

Vậy u→ + v→ = (–3 ; –2).

b) Ta có u→ – v→ = (–5 – 2 ; 1 – (–3)) = (–7 ; 4).

Vậy u→ – v→ = (–7 ; 4).

c) Ta có –2v→= (–2.2 ; –2.(–3)) = (–4 ; 6).

Vậy –2v→= (–4 ; 6).

Nhận xét: Hai vectơ u→ = (x1 ; y1), v→ = (x2 ; y2) (u→ ≠ v→) cùng phương khi và chỉ khi có một số thực k sao cho x1 = kx2 và y1 = ky2.

Ví dụ: Hai vectơ u→= (–1 ; 2) và v→ = (4 ; –8) có cùng phương hay không?

Hướng dẫn giải

Ta thấy 4 = –4.(–1) và –8 = –4.2

Do đó hai vectơ u→ = (–1 ; 2) và v→ = (4 ; –8) cùng phương với nhau.

Vậy hai vectơ u→ = (–1 ; 2) và v→ = (4 ; –8) cùng phương.

II. Tọa độ trung điểm đoạn thẳng và tọa độ trọng tâm tam giác

– Cho hai điểm A(xA; yA) và B(xB; yB). Nếu M(xM; yM) là trung điểm của đoạn thẳng AB thì

xM=xA+xB2 ; yM=yA+yB2.

– Cho tam giác ABC có A(xA ; yA), B(xB ; yB), C(xC ; yC). Nếu G(xG ; yG) là trọng tâm của tam giác ABC thì

xG=xA+xB+xC3; yG=yA+yB+yC3.

Ví dụ: Cho tam giác ABC có A(0 ; 3), B(–1 ; –4), C(4 ; –2). Hãy tìm tọa độ trung điểm I của cạnh BC và trọng tâm G của tam giác ABC.

Hướng dẫn giải

Gọi tọa độ trung điểm I của cạnh BC và trọng tâm G của tam giác ABC lần lượt là  (xI ; yI) và (xG ; yG).

Khi đó, vì I là trung điểm của BC nên ta có:

xI=xB+xC2=−1+42=32; yI=yB+yC2=(−4)+(−2)2=−3.

Suy ra I32;−3.

Vì G là trọng tâm của tam giác ABC nên ta có:

xG=xA+xB+xC3=0+(−1)+43=1; yG=yA+yB+yC3=3+(−4)+(−2)3=−1.

Suy ra G(1 ; –1).

Vậy I32;−3 và G(1 ; –1).

III. Biểu thức tọa độ của tích vô hướng

Nếu u→ = (x1; y1) và u→ = (x2; y2) thì u→.v→= x1x2 + y1y2.

Nhận xét:

a) Nếu a→ = (x; y) thì a→=a→.a→=x2+y2.

b) Nếu A(x1; y1) và B(x2; y2) thì AB = AB→ = (x2−x1)2+(y2−y1)2.

c) Với hai vectơ u→ = (x1; y1) và v→ = (x2; y2) đều khác 0→, ta có:

+  u→ và v→ vuông góc với nhau khi và chỉ khi x1x2 + y1y2 = 0.

+ cos(u→, v→) = u→.v→u→.v→ = x1.x2+y1y2x12+y12.x22+y22.

Ví dụ: Cho hai vectơ  = (3 ; –5) và  = (5 ; 3).

a) Tính ;

b) Tính .;

c) Tính góc giữa hai vectơ  và 

Hướng dẫn giải

a) Ta có  =   = .

Vậy  = .

b) Ta có .= 3.5 + (–5).3 = 0.

Vậy . = 0.

c) Ta có cos(, ) =  =  =  = 0.

Suy ra (, ) = 90°.

Vậy  và  vuông góc với nhau.

B. Bài tập tự luyện

B.1 Bài tập tự luận

Bài 1.  = (2 ; –2) và  = (3 ; 5)

a) Tìm tọa độ của vectơ  =  + .

b) Tìm tọa độ của vectơ  = –3  – .

Hướng dẫn giải

a) Ta có  =  + = (2 + 3; –2 + 5) = (5 ; 3).

Vậy  =  + = (5; 3).

b) Ta có  = –3  –  = (–3.2 – 3; –3.(–2) – 5) = (–9; 1).

Vậy  = –3  – = (–9; 1).

Bài 2. Trong mặt phẳng tọa độ Oxy cho ba điểm A(0; 4), B(–1; 3), C(–5; 2).

a) Tìm tọa độ trung điểm I của đọan thẳng AB.

b) Chứng minh ba điểm A, B, C không thẳng hàng.

c) Tìm tọa độ trọng tâm G của tam giác ABC.

Hướng dẫn giải

 a) Gọi tọa độ trung điểm I của đoạn thẳng AB là  (xI; yI).

Khi đó, vì I là trung điểm của AB nên ta có:

; .

Suy ra .

Vậy .

b) Để chứng minh ba điểm A, B, C không thẳng hàng ta chứng minh  và  không cùng phương.

Ta có  = (–1 – 0 ; 3 – 4) = (–1 ; –1)

= (–5 – 0 ; 2 – 4) = (–5 ; –2)

Ta thấy  nên  và  không cùng phương

Suy ra ba điểm A, B, C không thẳng hàng.

Vậy ba điểm A, B, C không thẳng hàng.

c) Gọi tọa độ trọng tâm G của tam giác ABC lần lượt là (xG ; yG).

Vì G là trọng tâm của tam giác ABC nên ta có:

; .

Suy ra G(–2 ; 3).

Vậy G(–2 ; 3).

Bài 3. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(1; 2), B(–2; –3), C(0; 4).

a) Tính . 

b) Giải tam giác ABC.

Hướng dẫn giải

a) Ta có  = (–2 – 1 ; –3 – 2) = (–3 ; –5)

 = (0 – 1 ; 4 – 2) = (–1 ; 2)

Khi đó . = –3.(–1) + (–5). 2 = –7.

Vậy . = –7.

b) Ta có  = (–3; –5) ⇒ AB =  =  = .

 = (–1; 2) ⇒ AC =  =  = .

 = (0 – (–2) ; 4 – (–3)) = (2; 7) ⇒ BC =  =  = .

cos(.) = = = 

Suy ra (.) ≈  122°28’

⇒  ≈ 122°28’.

Ta có  = (1 – (–2) ; 2 – (–3)) = (3; 5).

cos(, ) = =  = 

Suy ra (, ) ≈ 15°1’

⇒  ≈ 15°1’.

Mặt khác  = 180° – (+) = 42°31’.

Vậy tam giác ABC có AB = ; AC = ; BC = ;  ≈ 122°28’;  ≈ 15°1’;  = 42°31’.

B.2 Bài tập trắc nghiệm

Câu 1. Cho = (– 1; 2),  =  (5; – 7).  Tìm tọa độ của vectơ .

A. (4; – 5);          

B. (3; – 3);          

C. (6; 9) ;

D. (– 5; – 14).

Hướng dẫn giải

Đáp án đúng là : B

Ta có: 2= 2(–1; 2) = (–2; 4)

2 = (– 2 + 5); 4 – 7) = (3; – 3).

Câu 2. Trong hệ tọa độ Oxy cho hai điểm A (2; –3), I(4; 7). Biết I là trung điểm của đoạn thẳng AB. Tìm tọa độ điểm B.

A. I (6; 4);          

B. I (2; 10);         

C. I (6; 17);         

D. I (8; – 21).

Hướng dẫn giải

Đáp án đúng là : C

Gọi điểm B có tọa độ (xB ; yB)

Vì I là trung điểm của AB nên ta có :

  ⇒ B(6; 17).

Câu 3. Trong hệ tọa độ Oxy cho tam giác ABC có A (– 2 + x ; 2), B (3 ; 5 + 2y), C(x ; 3 – y). Tìm tổng 2x + y với x, y để O(0 ; 0) là trọng tâm tam giác ABC?

A. – 7;

B. – 2 ;

C. – 11; 

D. .

Hướng dẫn giải

Đáp án đúng là: C

Vì O là trọng tâm tam giác ABC nên, ta có:

  

Xem thêm các bài tóm tắt lý thuyết Toán lớp 10 Cánh diều hay, chi tiết khác:

Lý thuyết Bài 4: Xác suất của biến cố trong một số trò chơi đơn giản

Lý thuyết Bài 5: Xác suất của biến cố

Lý thuyết Bài 1: Tọa độ của vectơ

Lý thuyết Bài 2: Biểu thức tọa độ của các phép toán vectơ

Lý thuyết Bài 3: Phương trình đường thẳng

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giáo án Toán lớp 1 Thực hành và trải nghiệm: Ong và hoa (1 tiết) | Chân trời sáng tạo

Next post

Giáo án Toán lớp 1 Ôn tập cuối năm 7 | Chân trời sáng tạo

Bài liên quan:

20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10

Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10

Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới

Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10

Trắc nghiệm Toán 10 Kết nối tri thức có đáp án

Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)

Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10

Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề

Leave a Comment Hủy

Mục lục

  1. 20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  2. Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  3. Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới
  4. Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10
  5. Trắc nghiệm Toán 10 Kết nối tri thức có đáp án
  6. Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)
  7. Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10
  8. Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề
  9. Giáo án Toán 10 Kết nối tri thức (cả năm) mới nhất 2023
  10. Chuyên đề Toán 10 Kết nối tri thức | Giải bài tập Chuyên đề học tập Toán 10 hay, chi tiết
  11. Sách bài tập Toán 10 Kết nối tri thức | Giải SBT Toán 10 | Giải sách bài tập Toán 10 Tập 1, Tập 2 hay nhất | SBT Toán 10 Kết nối tri thức | SBT Toán 10 KNTT
  12. Tổng hợp Lý thuyết Toán lớp 10 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 10 | Tổng hợp kiến thức Toán 10 chương trình mới
  13. Giải sgk Toán 10 Kết nối tri thức | Giải Toán 10 | Giải Toán lớp 10 | Giải bài tập Toán 10 hay nhất | Giải Toán 10 Tập 1, Tập 2 Kết nối tri thức
  14. Sách bài tập Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  15. Giải SGK Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  16. 20 câu Trắc nghiệm Tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  17. Lý thuyết Tập hợp và các phép toán trên tập hợp (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  18. Bài giảng điện tử Tập hợp và các phép toán trên tập hợp | Kết nối tri thức Giáo án PPT Toán 10
  19. Giáo án Toán 10 Bài 2 (Kết nối tri thức 2023): Tập hợp và các phép toán trên tập hợp
  20. Sách bài tập Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  21. Giải SGK Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  22. 30 câu Trắc nghiệm Chương 1: Mệnh đề và tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  23. Lý thuyết Toán 10 Chương 1 (Kết nối tri thức 2023): Mệnh đề và Tập hợp hay, chi tiết
  24. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 1
  25. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  26. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  27. 20 câu Trắc nghiệm Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  28. Lý thuyết Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  29. Bài giảng điện tử Bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  30. Giáo án Toán 10 Bài 3 (Kết nối tri thức 2023): Bất phương trình bậc nhất hai ẩn
  31. Sách bài tập Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
  32. Giải SGK Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
  33. Lý thuyết Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  34. Bài giảng điện tử Hệ bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  35. Giáo án Toán 10 Bài 4 (Kết nối tri thức 2023): Hệ bất phương trình bậc nhất hai ẩn
  36. 20 câu Trắc nghiệm Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  37. Sách bài tập Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  38. Giải SGK Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  39. Lý thuyết Toán 10 Chương 2 (Kết nối tri thức 2023): Bất phương trình và hệ phương trình bậc nhất hai ẩn hay, chi tiết
  40. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 2
  41. 30 câu Trắc nghiệm Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  42. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  43. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  44. Lý thuyết Giá trị lượng giác của một góc từ 0 đến 180 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  45. Bài giảng điện tử Giá trị lượng giác của một góc từ 0 độ đến 180 độ | Kết nối tri thức Giáo án PPT Toán 10
  46. Giáo án Toán 10 Bài 5 (Kết nối tri thức 2023): Giá trị lượng giác của một góc từ 0 độ đến 180 độ
  47. 20 câu Trắc nghiệm Giá trị lượng giác của 1 góc từ 0° đến 180° (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  48. Sách bài tập Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0° đến 180°
  49. Giải SGK Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0 đến 180
  50. Lý thuyết Hệ thức lượng trong tam giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  51. Bài giảng điện tử Hệ thức lượng trong tam giác | Kết nối tri thức Giáo án PPT Toán 10
  52. Giáo án Toán 10 Bài 6 (Kết nối tri thức 2023): Hệ thức lượng trong tam giác

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán