Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 10

Lý thuyết Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng (Cánh diều 2023) hay, chi tiết | Toán lớp 10

By admin 16/10/2023 0

Lý thuyết Toán lớp 10 Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng

Video giải Toán 10 Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai – Cánh diều

A. Lý thuyết Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng

1. Hàm số bậc hai

Hàm số bậc hai là hàm số được cho bằng biểu thức có dạng y = ax2+bx+c, trong đó a, b, c là những hằng số và a ≠ 0. Tập xác định của hàm số là ℝ.

Ví dụ:

– Hàm số y = 2x2+3x−2 là hàm số bậc hai có hệ số của x2 bằng 2, hệ số của x bằng 3 và hệ số tự do bằng –2.

– Hàm số y = 2x – 3 không phải là hàm số bậc số do hệ số của x2 ở đây bằng 0.

2. Đồ thị hàm số bậc hai

Đồ thị hàm số bậc hai y = ax2+bx+c (a ≠ 0) là một đường parabol có đỉnh là điểm với toạ độ −b2a;−Δ4a và trục đối xứng là đường thẳng x=−b2a.

Chú ý: Cho hàm số f(x) = ax2+bx+c (a  ≠ 0), ta có: −Δ4a = f−b2a

Để vẽ đồ thị hàm số y = ax2+bx+c (a ≠ 0) ta thực hiện các bước:

Bước 1: Xác định toạ độ đỉnh: −b2a;−Δ4a;

Bước 2: Vẽ trục đối xứng x=−b2a;

Bước 3: Xác định một số điểm đặc biệt, chẳng hạn: giao điểm với trục tung (có toạ độ (0; c)) và trục hoành (nếu có), điểm đối xứng với điểm có toạ độ (0; c) qua trục đối xứng x=−b2a

Bước 4: Vẽ đường parabol đi qua các điểm đã xác định ta nhận được đồ thị hàm số.

Ví dụ: Vẽ đồ thị hàm số bậc hai y = x2−2x−3

Hướng dẫn giải

– Tập xác định: D = ℝ

– Ta có: a = 1; b = –2; c = –3; Δ=b2−4ac = (−2)2– 4.1.(–3) = 16

– Toạ độ đỉnh I = −b2a;−Δ4a = 22.1;−164.1=1;−4

– Trục đối xứng x=−b2a= 1

– Giao điểm của parabol với trục Oy là A(0; –3)

– Giao điểm của parabol với trục Ox là B (–1; 0); (3; 0)

– Điểm đối xứng với điểm A qua trục đối xứng x = 1 là D (2; –3)

Vẽ parabol qua các điểm trên:

Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng (Lý thuyết + Bài tập Toán lớp 10) – Cánh diều  (ảnh 1)

Chú ý:

Cho hàm số f(x) = ax2+bx+c (a  ≠ 0)

– Nếu  a > 0 thì hàm số nghịch biến trên khoảng −∞;−b2a; đồng biến trên khoảng  −b2a;+∞.

– Nếu a  <  0 thì hàm số đồng biến trên khoảng −∞;−b2a; nghịch biến trên khoảng  −b2a;+∞.

Bảng biến thiên:

Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng (Lý thuyết + Bài tập Toán lớp 10) – Cánh diều  (ảnh 1)

B. Bài tập tự luyện

B.1 Bài tập tự luận

Bài 1. Xác định parabol y = ax2+bx+4 trong mỗi trường hợp sau:

a) Đi qua điểm M(1; 12) và N(–3; 4);

b) Có đỉnh là I(–3; –5).

Hướng dẫn giải

a) Thay x = 1; y = 12 vào phương trình y = ax2+bx+4 ta được:

12 = a. 12+ b.1 + 4 = a + b = 8 (1)

Thay x = –3; y = 4 vào phương trình y = ax2+bx+4 ta được:

4 = a.(−3)2+ (–3).b + 4 = 9a – 3b = 0 (2)

Từ (1) và (2) ta có: a+b=89a−3b=0⇔a=2b=6 . Như vậy y = 2x2+6x+4

b) Ta có: Toạ độ đỉnh I −b2a;−Δ4a= (–3; –5)

Δ=b2−4ac= b2 – 4.a.4 = b2 – 16a

−b2a=−3−b2−16a4a=−5⇔b−6a=0b2−36a=0⇔6b−36a=0b2−36a=0⇔b2– 6b = 0 ⇔b(b – 6) = 0

⇔b=0b=6⇔a=0a=1. Như vậy trường a = 0; b = 0 không thoả mãn, ta chọn được:

a = 1; b = 6 ⇒ phương trình y = x2 + 6x + 4.

Bài 2. Vẽ đồ thị của mỗi hàm số sau:

a) y = 2x2 – 6x + 4;                   

b) y = –3x2 – 6x – 3.

Hướng dẫn giải

a)

– Tập xác định: D = ℝ

– Ta có: a = 2; b = –6; c = 4; Δ=b2−4ac = (– 6)2 – 4.2.4 = 4

– Toạ độ đỉnh I = −b2a;−Δ4a = 62.2;−44.2=32;−12

– Trục đối xứng x=−b2a= 32

– Giao điểm của parabol với trục Oy là A(0; 4)

– Giao điểm của parabol với trục Ox là B (1; 0); (2; 0)

– Chọn một điểm thuộc đồ thị cho x = –1 thay vào y = 2x2 – 6x + 4 ta được điểm

D(–1; 12)

Vẽ parabol qua các điểm trên:

Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng (Lý thuyết + Bài tập Toán lớp 10) – Cánh diều  (ảnh 1)

b)

– Tập xác định: D = ℝ

– Ta có: a = –3; b = –6; c = –3; Δ=b2−4ac = (– 6)2 – 4.(–3).(–3) = 0

– Toạ độ đỉnh I = −b2a;−Δ4a = 62.(−3);04.(−3)=−1;0

– Trục đối xứng x=−b2a= –1

– Giao điểm của parabol với trục Oy là A(0; –3)

– Giao điểm của parabol với trục Ox là B (–1; 0)

– Chọn một điểm thuộc đồ thị cho x = 1 thay vào y = –3x2 – 6x – 3 ta được điểm

D(1; –12)

– Chọn một điểm thuộc đồ thị cho x = –2 thay vào y = –3x2 – 6x – 3 ta được điểm

D(–2; –3)

Vẽ parabol qua các điểm trên:

Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng (Lý thuyết + Bài tập Toán lớp 10) – Cánh diều  (ảnh 1)

B.2 Bài tập trắc nghiệm

Câu 1. Cho hàm số y=ax2+bx+ca≠0 có đồ thị như hình sau. Khẳng định nào sau đây đúng?

Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng (Lý thuyết + Bài tập Toán lớp 10) – Cánh diều  (ảnh 1)

A. a > 0, b < 0, c < 0;

B. a > 0, b < 0, c > 0;

C. a > 0, b > 0, c > 0;

D. a < 0, b < 0, c > 0.

Hướng dẫn giải

Đáp án đúng là: B

Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng (Lý thuyết + Bài tập Toán lớp 10) – Cánh diều  (ảnh 1)

Bề lõm hướng lên nên a > 0.

Hoành độ đỉnh parabol x=−b2a>0 nên b < 0.

Parabol cắt trục tung tại điểm có tung độ dương nên c > 0.

Câu 2. Đồ thị sau đây là đồ thị của hàm số nào trong các phương án dưới đây?

Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng (Lý thuyết + Bài tập Toán lớp 10) – Cánh diều  (ảnh 1)

A. y=−x2+3x−1;

B. y=−2x2+3x−1;

C. y=2x2−3x+1;

D. y=x2−3x+1.

Hướng dẫn giải

Đáp án đúng là: C

Parabol có bề lõm hướng lên nên a > 0. Loại đáp án A, B.

Parabol cắt trục hoành tại điểm (1; 0), thay x = 1; y = 0 vào các hàm số ở đáp án C và D:

– Thay x = 1; y = 0 vào y=2x2−3x+1:

 0 = 2.12 – 3.1 + 1 (luôn đúng), như vậy điểm (1; 0) thuộc đồ thị hàm số ở đáp án C.

– Thay x = 1; y = 0 vào y=x2−3x+1:

0 = 12 – 3.1 + 1 (vô lí), như vậy điểm (1; 0) không thuộc đồ thị hàm số ở đáp án D.

Câu 3. Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây?

Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng (Lý thuyết + Bài tập Toán lớp 10) – Cánh diều  (ảnh 1)

A. y=−x2+4x−9;

B. y=x2−4x−1;

C. y=−x2+4x;

D. y=x2−4x−5.

Hướng dẫn giải

Đáp án đúng là: B

Bảng biến thiên có bề lõm hướng lên nên a > 0. Do đó, loại đáp án A và C.

Đỉnh của parabol có tọa độ là (2; – 5). Xét các đáp án còn lại, ta có:

– Thay x = 2; y = – 5 vào phương trình y=x2−4x−1:

– 5 = 22 – 4.2 – 1 = – 5. Như vậy điểm (2; – 5) thuộc đồ thị của hàm số.

– Thay x = 2; y = – 5 vào phương trình y=x2−4x−5:

– 5 = 22 – 4.2 – 5 = – 9 (Vô lí). Như vậy (2; – 5) không thuộc đồ thị hàm số.

Xem thêm các bài tóm tắt lý thuyết Toán lớp 10 Cánh diều hay, chi tiết khác:

Lý thuyết Bài 1: Hàm số và đồ thị

Lý thuyết Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng

Lý thuyết Bài 3: Dấu của tam thức bậc hai

Lý thuyết Bài 4: Bất phương trình bậc hai một ẩn

Lý thuyết Bài 5: Hai dạng phương trình quy về phương trình bậc hai

Bài giảng Toán 10 Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai – Cánh diều

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giải SGK Toán 8 Bài 2 (Chân trời sáng tạo): Diện tích xung quanh và thể tích của hình chóp tam giác đều, hình chóp tứ giác đều

Next post

Lý thuyết Phép nhân, phép chia phân số (Cánh diều 2023) hay, chi tiết | Toán lớp 6

Bài liên quan:

20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10

Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10

Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới

Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10

Trắc nghiệm Toán 10 Kết nối tri thức có đáp án

Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)

Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10

Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề

Leave a Comment Hủy

Mục lục

  1. 20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  2. Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  3. Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới
  4. Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10
  5. Trắc nghiệm Toán 10 Kết nối tri thức có đáp án
  6. Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)
  7. Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10
  8. Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề
  9. Giáo án Toán 10 Kết nối tri thức (cả năm) mới nhất 2023
  10. Chuyên đề Toán 10 Kết nối tri thức | Giải bài tập Chuyên đề học tập Toán 10 hay, chi tiết
  11. Sách bài tập Toán 10 Kết nối tri thức | Giải SBT Toán 10 | Giải sách bài tập Toán 10 Tập 1, Tập 2 hay nhất | SBT Toán 10 Kết nối tri thức | SBT Toán 10 KNTT
  12. Tổng hợp Lý thuyết Toán lớp 10 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 10 | Tổng hợp kiến thức Toán 10 chương trình mới
  13. Giải sgk Toán 10 Kết nối tri thức | Giải Toán 10 | Giải Toán lớp 10 | Giải bài tập Toán 10 hay nhất | Giải Toán 10 Tập 1, Tập 2 Kết nối tri thức
  14. Sách bài tập Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  15. Giải SGK Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  16. 20 câu Trắc nghiệm Tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  17. Lý thuyết Tập hợp và các phép toán trên tập hợp (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  18. Bài giảng điện tử Tập hợp và các phép toán trên tập hợp | Kết nối tri thức Giáo án PPT Toán 10
  19. Giáo án Toán 10 Bài 2 (Kết nối tri thức 2023): Tập hợp và các phép toán trên tập hợp
  20. Sách bài tập Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  21. Giải SGK Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  22. 30 câu Trắc nghiệm Chương 1: Mệnh đề và tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  23. Lý thuyết Toán 10 Chương 1 (Kết nối tri thức 2023): Mệnh đề và Tập hợp hay, chi tiết
  24. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 1
  25. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  26. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  27. 20 câu Trắc nghiệm Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  28. Lý thuyết Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  29. Bài giảng điện tử Bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  30. Giáo án Toán 10 Bài 3 (Kết nối tri thức 2023): Bất phương trình bậc nhất hai ẩn
  31. Sách bài tập Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
  32. Giải SGK Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
  33. Lý thuyết Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  34. Bài giảng điện tử Hệ bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  35. Giáo án Toán 10 Bài 4 (Kết nối tri thức 2023): Hệ bất phương trình bậc nhất hai ẩn
  36. 20 câu Trắc nghiệm Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  37. Sách bài tập Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  38. Giải SGK Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  39. Lý thuyết Toán 10 Chương 2 (Kết nối tri thức 2023): Bất phương trình và hệ phương trình bậc nhất hai ẩn hay, chi tiết
  40. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 2
  41. 30 câu Trắc nghiệm Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  42. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  43. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  44. Lý thuyết Giá trị lượng giác của một góc từ 0 đến 180 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  45. Bài giảng điện tử Giá trị lượng giác của một góc từ 0 độ đến 180 độ | Kết nối tri thức Giáo án PPT Toán 10
  46. Giáo án Toán 10 Bài 5 (Kết nối tri thức 2023): Giá trị lượng giác của một góc từ 0 độ đến 180 độ
  47. 20 câu Trắc nghiệm Giá trị lượng giác của 1 góc từ 0° đến 180° (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  48. Sách bài tập Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0° đến 180°
  49. Giải SGK Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0 đến 180
  50. Lý thuyết Hệ thức lượng trong tam giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  51. Bài giảng điện tử Hệ thức lượng trong tam giác | Kết nối tri thức Giáo án PPT Toán 10
  52. Giáo án Toán 10 Bài 6 (Kết nối tri thức 2023): Hệ thức lượng trong tam giác

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán