Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 10

Lý thuyết Phương trình đường thẳng (Cánh diều 2023) hay, chi tiết | Toán lớp 10

By admin 17/10/2023 0

Lý thuyết Toán lớp 10 Bài 3: Phương trình đường thẳng

A. Lý thuyết Phương trình đường thẳng

I. Phương trình tham số của đường thẳng

1. Vectơ chỉ phương của đường thẳng

Vectơ u→ được gọi là vectơ chỉ phương của đường thẳng ∆ nếu u→ ≠ 0→  và giá của u→ song song hoặc trùng với ∆.

Nhận xét:

– Nếu u→ là một vectơ chỉ phương của ∆ thì ku→ (k ≠ 0) cũng là một vectơ chỉ phương của ∆.

– Một đường thẳng hoàn toàn được xác định khi biết một điểm và một vectơ chỉ phương của đường thẳng đó.

Ví dụ: Đường thẳng ∆ đi qua điểm (2 ; 0) và (0 ; –1) có vectơ chỉ phương u→ như hình vẽ sau:

2. Phương trình tham số của đường thẳng

Hệ x=x0+aty=y0+bt  (a2 + b2 > 0 và t là tham số) được gọi là phương trình tham số của đường thẳng  ∆ đi qua M0(x0 ; y0) và nhận u→ = (a ; b) làm vectơ chỉ phương.

Nhận xét: Cho đường thẳng ∆ có phương trình tham số là: x=x0+aty=y0+bt  (a2 + b2 > 0 và t là tham số).

+ Với mỗi giá trị cụ thể của t, ta xác định được một điểm trên đường thẳng ∆. Ngược lại, với mỗi điểm trên đường thẳng ∆, ta xác định được một giá trị cụ thể của t.

+ Vectơ u→ = (a ; b) là một vectơ chỉ phương của ∆.

Ví dụ:

a) Viết phương trình tham số của đường thẳng ∆ đi qua điểm A(1; 2) và có vectơ chỉ phương u→ = (–1 ; 3).

b) Cho đường thẳng ∆ có phương trình tham số là  x=4+2ty=−3−t. Chỉ ra tọa độ một vectơ chỉ phương của ∆ và một điểm thuộc đường thẳng ∆.

Hướng dẫn giải

a) Phương trình đường thẳng ∆ đi qua điểm A(1; 2) và có vectơ chỉ phương u→ = (–1 ; 3) nên có phương trình tham số là x=1−ty=2+3t.

Vậy phương trình tham số của đường thẳng ∆ là x=1−ty=2+3t.

b) Đường thẳng ∆ có phương trình tham số là  x=4+2ty=−3−t.

Khi đó ∆ có một vectơ chỉ phương là (2 ; –1) và điểm (4 ; –3) thuộc ∆.

Vậy ∆ có một vectơ chỉ phương là (2 ; –1) và điểm (4 ; –3) thuộc ∆.

II. Phương trình tổng quát của đường thẳng

1. Vectơ pháp tuyến của đường thẳng

Vectơ n→ được gọi là vectơ pháp tuyến của đường thẳng  ∆ nếu n→ ≠ 0→  và giá của vectơ n→ vuông góc với  ∆.

Nhận xét:

– Nếu n→ là một vectơ pháp tuyến của ∆ thì kn→ (k ≠ 0) cũng là một vectơ pháp tuyến của ∆.

– Một đường thẳng hoàn toàn được xác định khi biết một điểm và một vectơ pháp tuyến của đường thẳng đó.

– Nếu một đường thẳng ∆ có vectơ chỉ phương là u→ = (a ; b) thì vectơ n→ = (–b ; a) là một vectơ pháp tuyến của ∆.

2. Phương trình tổng quát của đường thẳng

Phương trình ax + by + c = 0 (a và b không đồng thời bằng 0) được gọi là phương trình tổng quát của đường thẳng.

Nhận xét:

– Đường thẳng ∆ đi qua điểm M0­ (x0 ; y0) và nhận n→ = (a ; b) làm vectơ pháp tuyến có phương trình là: a(x – x0) + b(y – y0) = 0 ⇔ ax + by + (–ax0 – by0) = 0.

– Mỗi phương trình ax + by + c = 0 (a và b không đồng thời bằng 0) đều xác định một đường thẳng ∆ trong mặt phẳng tọa độ nhận một vectơ pháp tuyến là n→ = (a ; b).

Ví dụ: Viết phương trình tổng quát của đường thẳng d đi qua điểm A(1; –2) và có vectơ pháp tuyến n→ = (–2 ; –3).

Hướng dẫn giải

Theo giả thiết, phương trình của đường thẳng d là : –2(x – 1) + (–3).(y + 2) = 0.

Từ đó, ta nhận được phương trình tổng quát của đường thẳng d là –2x – 3y – 4 = 0.

Vậy phương trình tổng quát của d là –2x – 3y – 4 = 0.

3. Những dạng đặc biệt của phương trình tổng quát

Cho đường thẳng ∆ có phương trình tổng quát ax + by + c = 0 (a hoặc b khác 0).

a) Nếu b = 0 và a ≠ 0 thì phương trình đường thẳng ∆ trở thành ax + c = 0. Khi đó đường thẳng ∆ song song hoặc trùng với trục Oy và cắt trục Ox tại điểm −ca;0.

b) Nếu b ≠ 0 và a = 0 thì phương trình đường thẳng ∆ trở thành by + c = 0. Khi đó đường thẳng ∆ song song hoặc trùng với trục Ox và cắt trục Oy tại điểm 0;−cb (Hình 30).

c) Nếu b ≠ 0 và a ≠ 0 thì phương trình đường thẳng ∆ có thể viết thành

 y = −abx – cb.

Khi đó, đường thẳng ∆ là đồ thị hàm số bậc nhất y = –abx – cb với hệ số góc là  k = –ab(Hình 31).

Nhận xét:

– Đường thẳng ∆ có phương trình tổng quát ax + by + c = 0 (a hoặc b khác 0) là đồ thị của hàm số bậc nhất khi và chỉ khi a ≠ 0 và b ≠ 0.

– Phương trình trục hoành là y = 0, phương trình trục tung là x = 0.

Ví dụ:

a) Cho phương trình đường thẳng ∆ là 2x + 4 = 0. Khi đó đường thẳng ∆ song song với trục Oy và cắt trục Ox tại điểm (–2 ; 0)

b) Cho phương trình đường thẳng ∆ là 3x – 9 = 0. Khi đó đường thẳng ∆ song song với trục Ox và cắt trục Oy tại điểm (0 ; 3)

c) Cho phương trình đường thẳng ∆ là x + 2y – 2 = 0. Khi đó, đường thẳng ∆ là đồ thị của hàm số bậc nhất y = −12x + 1 với hệ số góc k = −12

III. Lập phương trình đường thẳng

1. Lập phương trình đường thẳng đi qua một điểm và biết vectơ pháp tuyến

Phương trình đường thẳng ∆ đi qua điểm M0(x0 ; y0) và nhận n→ = (a ; b) (n→ ≠ 0→) làm vectơ pháp tuyến là a(x – x0) + b(y – y0) = 0.

Ví dụ: Lập phương trình của đường thẳng ∆ đi qua điểm M(2; –2) và có vectơ pháp tuyến n→ = (2 ; 3).

Hướng dẫn giải

Theo giả thiết, phương trình của đường thẳng ∆ là: 2(x – 2) + 3.(y + 2) = 0.

Từ đó, ta nhận được phương trình của đường thẳng ∆ là 2x + 3y + 2 = 0.

Vậy phương trình của ∆ là 2x + 3y + 2 = 0.

2. Lập phương trình đường thẳng đi qua một điểm và biết vectơ chỉ phương

Phương trình tham số của đường thẳng ∆ đi qua điểm M0(x0 ; y0) và nhận u→ = (a ; b) (u→≠ 0→) làm vectơ chỉ phương là x=x0+aty=y0+bt (t là tham số).

Nếu a ≠ 0 và b  ≠ 0 thì ta còn có thể viết phương trình của đường thẳng ∆ ở dạng: x−x0a=y−y0b.

Ví dụ: Viết phương trình tham số của đường thẳng ∆ đi qua điểm M(–1; 2) và có vectơ chỉ phương u→ = (1 ; –3).

Hướng dẫn giải

Cách 1: Phương trình tham số của đường thẳng ∆ đi qua điểm M(–1; 2) và có vectơ chỉ phương u→ = (1 ; –3) là x=−1+ty=2−3t.

Vậy phương trình tham số của đường thẳng ∆ là x=−1+ty=2−3t.

Cách 2: Phương trình đường thẳng ∆ đi qua điểm M(–1; 2) và có vectơ chỉ phương u→ = (1 ; –3) nên có phương trình là x+11=y−2−3 ⇔ –3x – y – 1= 0.

Vậy phương trình của đường thẳng ∆ là –3x – y – 1= 0.

3. Lập phương trình đi qua hai điểm

Đường thẳng ∆ đi qua hai điểm A(x0 ; y0), B(x1 ; y1) nên nhận vectơ AB→ = (x1 – x0 ; y1 – y0) làm vectơ chỉ phương. Do đó, phương trình tham số của đường thẳng ∆ là:  x=x0+(x1−x0)ty=y0+(y1−y0)t  (t là tham số).

Nếu x1 – x0 ≠ 0 và y1 – y0 ≠ 0 thì ta còn có thể viết phương trình của đường thẳng ∆ ở dạng: x−x0x1−x0=y−y0y1−y0.

Ví dụ: Lập phương trình ∆ đi qua hai điểm A(2 ; 2) và B(–1 ; 3).

Hướng dẫn giải

Phương trình ∆ đi qua hai điểm A(2 ; 2) và B(–1 ; 3) là

x−2−1−2=y−23−2 ⇔ x−2−3=y−21 ⇔ x + 3y – 8 = 0.

Vậy phương trình đường thẳng ∆ đi qua hai điểm A(2 ; 2) và B(–1 ; 3) là x + 3y – 8 = 0.

B. Bài tập tự luyện

B.1 Bài tập tự luận

Bài 1. Cho đường thẳng ∆ có phương trình tổng quát là –x + 7y – 5 = 0.

a) Lập phương trình tham số của đường thẳng ∆.

b) Tìm tọa độ giao điểm của đường thẳng ∆ lần lượt với các trục Ox, Oy.

Hướng dẫn giải

a) Đường thẳng ∆ có phương trình tổng quát là –x + 7y – 5 = 0 nên có vectơ pháp tuyến n→ = (–1 ; 7).

Suy ra đường thẳng ∆ có vectơ chỉ phương là u→ = (7 ; 1).

Ta thấy điểm A(–5 ; 0) thuộc ∆.

Khi đó, phương trình tham số của đường thẳng ∆ đi qua điểm A(–5 ; 0) có vectơ chỉ phương u→ = (7 ; 1) là: x=−5+7ty=t

Vậy phương trình tham số của đường thẳng ∆ là  x=−5+7ty=t.

b) Tọa độ giao điểm của ∆ với trục Ox là nghiệm của hệ: −x+7y−5=0y=0 

Giải hệ −x+7y−5=0y=0 ta được x=−5y=0

Suy ra tọa độ giao điểm của ∆ với trục Ox là (–5 ; 0).

Tọa độ giao điểm của ∆ với trục Oy là nghiệm của hệ: −x+7y−5=0x=0

Giải hệ −x+7y−5=0x=0 ta được x=0y=57

Suy ra tọa độ giao điểm của ∆ với trục Oy là 0;57 

Vậy tọa độ giao điểm của ∆ với trục Ox, Oy lần lượt là (–5 ; 0) và 0;57.

Bài 2. Cho tam giác ABC có A(0; 4), B(–3; 2), C(1; 6).

a) Lập phương trình của đường thẳng BC.

b) Lập phương trình đường trung trực của đoạn thẳng AB.

c) Lập phương trình đường trung tuyến AM của tam giác ABC.

Hướng dẫn giải

a) Phương trình đường thẳng BC đi qua hai điểm B(–3; 2), C(1; 6) là

x+31+3=y−26−2 ⇔ x+34=y−24 ⇔ x – y + 5 = 0.

Vậy phương trình đường thẳng BC là x – y + 5 = 0.

b) Gọi I(xI ; yI) là trung điểm của AB.

Khi đó xI=xA+xB2=0+(−3)2=−32; yI=yA+yB2=4+22=3.

Suy ra I−32;3.

Đường trung trực của AB đi qua điểm I và nhận vectơ AB→ = (–3 ; –2) làm vectơ pháp tuyến.

Khi đó đường trung trực của AB có phương trình là:

 –3(x – −32) – 2(y – 3) = 0 ⇔ –3x – 2y + 212 = 0.

Vậy phương trình đường trung trực của AB là –3x – 2y + 212 = 0.

c) Gọi M(xM ; yM) là trung điểm của đoạn thẳng BC.

Khi đó xM=xB+xC2=−3+12=−1; yM=yB+yC2=2+62=4.

Suy ra M(–1 ; 4).

Đường trung tuyến AM đi qua hai điểm A và có vectơ chỉ phương AM→ = (–1 ; 0) có phương trình là: x=−ty=4

Vậy đường trung tuyến AM có phương trình là x=−ty=4.

Bài 3. Viết phương trình đường thẳng d biết:

a) Đường thẳng d đi qua điểm M(4; 3) và có vectơ pháp tuyến là n→ = (3; –4).

b) Đường thẳng d đi qua điểm M(0 ; –2) và có vectơ chỉ phương là u→ = (1; 1).

c) Đường thẳng d đi qua hai điểm A(–1 ; 3) và B(2 ; –6).

Hướng dẫn giải

a) Phương trình đường thẳng d đi qua điểm M(4; 3) và có vectơ pháp tuyến là n→ = (3; –4) là: 3(x – 4) – 4.(y – 3) = 0 ⇔ 3x – 4y = 0.

Vậy phương trình của ∆ là 3x – 4y = 0.

b) Phương trình tham số của đường thẳng d đi qua điểm M(0 ; –2) và có vectơ chỉ phương là u→ = (1; 1) là x=0+ty=−2+t ⇔ x=ty=−2+t

Vậy phương trình tham số của đường thẳng d đi qua điểm M(0 ; –2) và có vectơ chỉ phương là u→ = (1; 1) là x=ty=−2+t.

c) Phương trình d đi qua hai điểm A(–1 ; 3) và B(2 ; –6) là

x+12+1=y−3−6−3 ⇔ x+13=y−3−9 ⇔ 3x + y = 0.

Vậy phương trình đường thẳng ∆ đi qua hai điểm A(–1 ; 3) và B(2 ; –6) là 3x + y = 0.

B.2 Bài tập trắc nghiệm

Câu 1. Đường thẳng d đi qua điểm M(1; – 2) và có vectơ chỉ phương u→=3;5 có phương trình tham số là:

A.   d:x=3+ty=5−2t;                          

B. d:x=1+3ty=−2+5t;                         

C. d:x=1+5ty=−2−3t;                         

D. d:x=3+2ty=5+t.

Hướng dẫn giải

Đáp án đúng là: B

Ta có: M1;−2∈du→d=3;5 

Phương trình tham số d:x=1+3ty=−2+5t  t∈ℝ. 

Câu 2. Phương trình tổng quát của đường thẳng đi qua hai điểm A(3 ; – 1) và B(1 ; 5) là:

A. – 2x + 3y + 6 = 0 ;                     

B. 3x – 2y + 10 = 0;                       

C. 3x – 2y + 6 = 0 ;                                                     

D. 3x + y – 8 = 0.

Hướng dẫn giải

Đáp án đúng là: D

Vectơ chỉ phương của AB là u→AB=AB→=−2;6

⇒n→AB=3;1 là vectơ pháp tuyến của đường thẳng qua hai điểm A, B.

Mặt khác A(3; – 1) ∈ AB, suy ra phương trình tổng quát của đường thẳng AB là:

3(x – 3) + 1(y + 1) = 0 hay 3x + y – 8 = 0.

Câu 3. Phương trình đường thẳng cắt hai trục tọa độ tại A(– 2 ; 0) và B(0 ; 4) là:

A. 2x – 3y + 2 = 0;                         

B. 4x – 2y + 8 = 0;

C. 3x – 3y – 6 = 0;                                                      

D. 2x – 3y – 5 = 0.

Hướng dẫn giải

Đáp án đúng là: B

Ta có: A−2;0∈OxB0;4∈Oy

Do đó, phương trình đường thẳng: x−2+y4=1⇔4x – 2y + 8 = 0 hay 2x – y + 4 = 0.

Xem thêm các bài tóm tắt lý thuyết Toán lớp 10 Cánh diều hay, chi tiết khác:

Lý thuyết Bài 4: Xác suất của biến cố trong một số trò chơi đơn giản

Lý thuyết Bài 5: Xác suất của biến cố

Lý thuyết Bài 1: Tọa độ của vectơ

Lý thuyết Bài 2: Biểu thức tọa độ của các phép toán vectơ

Lý thuyết Bài 3: Phương trình đường thẳng

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giáo án Toán lớp 1 Xăng-ti-mét. Đơn vị đo độ dài (2 tiết) | Chân trời sáng tạo

Next post

Giáo án Toán lớp 1 Đo độ dài (2 tiết) | Chân trời sáng tạo

Bài liên quan:

20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10

Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10

Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới

Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10

Trắc nghiệm Toán 10 Kết nối tri thức có đáp án

Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)

Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10

Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề

Leave a Comment Hủy

Mục lục

  1. 20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  2. Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  3. Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới
  4. Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10
  5. Trắc nghiệm Toán 10 Kết nối tri thức có đáp án
  6. Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)
  7. Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10
  8. Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề
  9. Giáo án Toán 10 Kết nối tri thức (cả năm) mới nhất 2023
  10. Chuyên đề Toán 10 Kết nối tri thức | Giải bài tập Chuyên đề học tập Toán 10 hay, chi tiết
  11. Sách bài tập Toán 10 Kết nối tri thức | Giải SBT Toán 10 | Giải sách bài tập Toán 10 Tập 1, Tập 2 hay nhất | SBT Toán 10 Kết nối tri thức | SBT Toán 10 KNTT
  12. Tổng hợp Lý thuyết Toán lớp 10 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 10 | Tổng hợp kiến thức Toán 10 chương trình mới
  13. Giải sgk Toán 10 Kết nối tri thức | Giải Toán 10 | Giải Toán lớp 10 | Giải bài tập Toán 10 hay nhất | Giải Toán 10 Tập 1, Tập 2 Kết nối tri thức
  14. Sách bài tập Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  15. Giải SGK Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  16. 20 câu Trắc nghiệm Tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  17. Lý thuyết Tập hợp và các phép toán trên tập hợp (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  18. Bài giảng điện tử Tập hợp và các phép toán trên tập hợp | Kết nối tri thức Giáo án PPT Toán 10
  19. Giáo án Toán 10 Bài 2 (Kết nối tri thức 2023): Tập hợp và các phép toán trên tập hợp
  20. Sách bài tập Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  21. Giải SGK Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  22. 30 câu Trắc nghiệm Chương 1: Mệnh đề và tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  23. Lý thuyết Toán 10 Chương 1 (Kết nối tri thức 2023): Mệnh đề và Tập hợp hay, chi tiết
  24. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 1
  25. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  26. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  27. 20 câu Trắc nghiệm Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  28. Lý thuyết Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  29. Bài giảng điện tử Bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  30. Giáo án Toán 10 Bài 3 (Kết nối tri thức 2023): Bất phương trình bậc nhất hai ẩn
  31. Sách bài tập Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
  32. Giải SGK Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
  33. Lý thuyết Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  34. Bài giảng điện tử Hệ bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  35. Giáo án Toán 10 Bài 4 (Kết nối tri thức 2023): Hệ bất phương trình bậc nhất hai ẩn
  36. 20 câu Trắc nghiệm Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  37. Sách bài tập Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  38. Giải SGK Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  39. Lý thuyết Toán 10 Chương 2 (Kết nối tri thức 2023): Bất phương trình và hệ phương trình bậc nhất hai ẩn hay, chi tiết
  40. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 2
  41. 30 câu Trắc nghiệm Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  42. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  43. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  44. Lý thuyết Giá trị lượng giác của một góc từ 0 đến 180 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  45. Bài giảng điện tử Giá trị lượng giác của một góc từ 0 độ đến 180 độ | Kết nối tri thức Giáo án PPT Toán 10
  46. Giáo án Toán 10 Bài 5 (Kết nối tri thức 2023): Giá trị lượng giác của một góc từ 0 độ đến 180 độ
  47. 20 câu Trắc nghiệm Giá trị lượng giác của 1 góc từ 0° đến 180° (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  48. Sách bài tập Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0° đến 180°
  49. Giải SGK Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0 đến 180
  50. Lý thuyết Hệ thức lượng trong tam giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  51. Bài giảng điện tử Hệ thức lượng trong tam giác | Kết nối tri thức Giáo án PPT Toán 10
  52. Giáo án Toán 10 Bài 6 (Kết nối tri thức 2023): Hệ thức lượng trong tam giác

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán