Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 10

Sách bài tập Toán 10 Bài 2 (Chân trời sáng tạo): Đường thẳng trong mặt phẳng tọa độ

By admin 15/10/2023 0

Giải SBT Toán lớp 10 Bài 2: Đường thẳng trong mặt phẳng tọa độ

Giải SBT Toán 10 trang 65 Tập 2

Các bài toán sau đây được xét trong mặt phẳng Oxy.

Bài 1 trang 65 SBT Toán 10 tập 2: Tìm các giá trị của tham số a, b, c để phương trình ax + by + c = 0 có thể biểu diễn được các đường thẳng trong hình đưới đây.

Sách bài tập Toán 10 Bài 2: Đường thẳng trong mặt phẳng tọa độ - Chân trời sáng tạo (ảnh 1)

Lời giải:

a) Giả sử đường thẳng cần tìm có dạng y = a’x + b’

Đường thẳng đi qua điểm A−32;0  ; B(0; 3)

Ta có hệ  −32a‘+b‘=00.a‘+b‘=3⇔a‘=2b‘=3

Suy ra đường thẳng có dạng y = 2x + 3 ⇔  2x – y + 3 = 0

Vì vậy a = 2; b = – 1; c = 3.

b) Giả sử đường thẳng cần tìm có dạng y = a’x + b’

Đường thẳng đi qua điểm A(1; 0) ; B(0; 1)

Ta có hệ  a‘+b‘=00.a‘+b‘=1⇔a‘=−1b‘=1

Suy ra đường thẳng có dạng y = – x + 1 ⇔  x + y – 1 = 0

Vì vậy a = 1; b = 1; c = – 1.

c) Giả sử đường thẳng cần tìm có dạng y = a’x + b’

Đường thẳng đi qua điểm A(0; 3) và song song với trục hoành nên đường thẳng có dạng y c 3 = 0

Vì vậy a = 0; b = 1; c = – 3.

d) Giả sử đường thẳng cần tìm có dạng y = a’x + b’

Đường thẳng đi qua điểm A(– 2; 0) và song song với trục Oy nên đường thẳng có dạng x + 2 = 0.

Vì vậy a = 1; b = 0; c = 2.

Bài 2 trang 65 SBT Toán 10 tập 2: Lập phương trình tổng quát và phương trình tham số của đường thẳng d trong mỗi trường hợp sau:

a) d đi qua điểm M(2; 2) và có vectơ chỉ phương u→  = (4; 7);

b) d đi qua điểm N(0; 1) và có vectơ pháp tuyến là n→ = (-5; 3);

c) d đi qua A(-2; -3) và có hệ số góc k = 3,

d) d đi qua hai điểm P(1; 1) và Q(3; 4).

Lời giải:

a) Đường thẳng d đi qua điểm M(2; 2) và có vectơ chỉ phương u→  = (4; 7) nên ta có phương trình tham số của đường thẳng d là:  x=2+4ty=2+7t

Đường thẳng d đi qua điểm M(2; 2) và có vectơ chỉ phương u→  = (4; 7) nên vectơ pháp tuyến của đường thẳng d là n→  (7; –4) phương trình tổng quát của đường thẳng d là: 7(x – 2) – 4(y – 2) = 0  ⇔7x – 4y – 6 = 0

b) Đường thẳng d đi qua điểm N(0; 1) và có vectơ pháp tuyến là n→ = (– 5; 3) nên ta có phương trình tổng quát của đường thẳng d là: – 5(x – 0) + 3(y – 1) = 0 ⇔ – 5x + 3y – 3 = 0.

Đường thẳng d đi qua điểm N(0; 1) và có vectơ pháp tuyến là n→ = (–5 ; 3) nên ta có vectơ chỉ của đường thẳng d là u→ (3; 5) phương trình tham số của đường thẳng d là: x=3ty=1+5t .

c) Đường thẳng d đi qua A(–2; –3) và có hệ số góc k = 3 nên phương trình tổng quát của đường thẳng d là: y = 3(x + 2) – 3 ⇔ 3x – y + 3 = 0.

Khi đó vectơ pháp tuyến của đường thẳng d là n→3;−1 suy ra vectơ chỉ phương u→(1;3) . Vì vậy phương trình tham số của đường thẳng d là: x=−2+ty=−3+3t .

d) Đường thẳng d đi qua hai điểm P(1; 1) và Q(3; 4) nên vectơ chỉ phương u→=PQ→  = (2; 3) và có vectơ pháp tuyến là vectơ n→  (3; – 2).

Phương trình tham số của đường thẳng d là: x=1+2ty=1+3t .

Phương trình tổng quát của đường thẳng d là: 3(x – 1) – 2(y – 1) = 0 ⇔  3x – 2y – 1 = 0.

Giải SBT Toán 10 trang 66 Tập 2

Bài 3 trang 66 SBT Toán 10 Tập 2: Cho tam giác ABC, biết A(1; 4), B(0; 1) và C(4; 3).

a) Lập phương trình tổng quát của đường thẳng BC.

b) Lập phương trình tham số của đường trung tuyến AM.

c) Lập phương trình tổng quát của đường cao AH.

Lời giải:

a) Đường thẳng BC có vectơ chỉ phương là vectơ u→=12BC→=(2;1)  và có vectơ pháp tuyến là vectơ  n→=(1;−2) nên phương trình tổng quát của đường thẳng d là: 1(x – 0) – 2(y – 1) = 0 ⇔ x – 2y + 2 = 0.

b) Ta có M là trung điểm của BC nên toạ độ của M là: M(2; 2).

Đường thẳng AM có vectơ chỉ phương là vectơ u→=AM→ = (1; – 2) nên phương trình tham số của đường thẳng AM là: x=1+ty=4−2t  

c) Đường cao AH đi qua điểm A(1; 4) và có vectơ pháp tuyến là n→=12BC→ = (2; 1) nên phương trình tổng quát của đường cao AH là: 2(x – 1) + 1(y – 4) = 0 ⇔ 2x + y – 6 = 0.

Bài 4 trang 66 SBT Toán 10 Tập 2: Lập phương trình tổng quát của đường thẳng  trong mỗi trường hợp sau:

a)  đi qua M(3; 3) và song song với đường thẳng x + 2y – 2022 = 0;

b)  đi qua N(2; – 1) và vuông góc với đường thẳng 3x + 2y + 99 = 0.

Lời giải:

a) Đường thẳng  đi qua M(3; 3) và song song với đường thẳng x + 2y – 2022 = 0 nên đường thẳng ∆ có vectơ pháp tuyến là vectơ n→ (1; 2) phương trình tổng quát của đường thẳng ∆ là: 1(x – 3) + 2(y – 3) = 0 ⇔  x + 2y – 9 = 0

b) Đường thẳng  đi qua N(2; –1) và vuông góc với đường thẳng 3x + 2y + 99 = 0 nên đường thẳng ∆ có vectơ pháp tuyến là vectơ n→ (2; – 3) phương trình tổng quát của đường thẳng ∆ là: 2(x – 2) – 3(y + 1) = 0 ⇔ 2x – 3y – 7 = 0.

Bài 5 trang 66 SBT Toán 10 Tập 2: Xét vị trí tương đối của các cặp đường thẳng d1 và d2 sau đây:

a) d1:2x+y+9=0  và d2:2x+3y−9=0 ;

b) d1:x=2+ty=1−2t và d2:2x+y+10=0 ;

c) d1:x=1−ty=8−5t và d2:5x−y+3=0

Lời giải:

a) d1 và d2 có véc tơ pháp tuyến lần lượt là n1→  (2; 1) và n2→  (2; 3)

Ta có: a1.b2 – a2.b1 = 2.3 – 1.2 = 4 ≠ 0, suy ra véc tơ n1→  và n2→  là hai vectơ không cùng phương. Do đó d1 và d2 cắt nhau tại một điểm M.

Giải hệ phương trình  2x+y+9=02x+3y−9=0 ta được M(- 9; 9).

Vậy hai đường thẳng d1 và d2 cắt nhau tại một điểm M.

b) Ta có d1:  x=2+ty=1−2tsuy ra phương trình tổng quát của d1 là: 2x + y – 5 = 0

d1 và d2 có vectơ pháp tuyến lần lượt là n1→ (2; 1) và n2→ (2; 1).

Ta có: a1.b2 – a2.b1 = 2.1 – 1.2 = 0, suy ra vectơ n1→  và n2→  là hai vectơ cùng phương. Do đó d1 và d2 song song hoặc trùng nhau. Ta lấy M(– 4; – 2) thuộc d2 , thay toạ độ M vào d1 ta được 2.(– 4) + (– 2) – 5 = – 15 ≠ 0 suy ra M không thuộc d1. Vậy d1 song song với d2.

c) Ta có d1: x=1−ty=8−5t⇔t=x−1−1t=y−8−5⇒x−1−1=y−8−5⇔5x−y+3=0 suy ra phương trình tổng quát của d1 là: 5x – y + 3 = 0.

Khi đó d1 và d2 đều có phương trình tổng quát là 5x – y + 3 = 0

Vậy d1 trùng với d2.

Bài 6 trang 66 SBT Toán 10 Tập 2: Cho đường thẳng d có phương trình tham số: x=1+ty=2+2t. Tìm giao điểm của d với đường thẳng Δ:x+y−2=0 .

Lời giải:

Ta có d: x=1+ty=2+2t

Suy ra phương trình tổng quát của đường thẳng d là: 2x – y = 0

Tạo độ giao điểm của d với đường thẳng ∆ là nghiệm của hệ phương trình:

 x+y−2=02x−y=0⇒x=23y=43

Vậy toạ độ giao điểm của đường thẳng d với đường thẳng ∆ là: M23;43 .

Bài 7 trang 66 SBT Toán 10 Tập 2: Tìm số đo của góc giữa hai đường thẳng d1 và d2 trong các trường hợp sau:

a) d1:5x−3y+1=0 và d2:10x−6y−7=0 ;

b)  d1:7x−3y+7=0 và d2:3x+7y−10=0 ;

c)  d1:2x−4y+9=0 và d2:6x−2y−2023=0 .

Lời giải:

a) d1 và d2 có vectơ pháp tuyến lần lượt là n1→  (5; – 3) và n2→ (10; – 6).

Ta có cosd1,d2=5.10+(−3).(−6)52+(−3)2.102+(−6)2=1 .

Suy ra (d1, d2) = 0o

b) d1 và d2 có véc tơ pháp tuyến lần lượt là n1→  (7; – 3) và n2→ (3; 7)

Ta có a1.a2 +b1.b2 = 7.3 + (– 3).7 = 0, suy ra (d1, d2) = 90o.

c) d1 và d2 có véc tơ pháp tuyến lần lượt là n1→  (2; – 4) và n2→ (6; – 2)

Ta có  cosd1,d2=2.6+(−4).(−2)22+(−4)2.62+(−2)2=22

Suy ra (d1, d2) = 45o.

Bài 8 trang 66 SBT Toán 10 Tập 2: Tính khoảng cách từ điểm M đến đường thẳng  trong các trường hợp sau:

a) M(2; 3) và Δ:8x−6y+7=0

b) M(0;1) và Δ:4x+9y−20=0

c) M(1; 1) và Δ:3y−5=0

d) M(4; 9) và Δ:x−25=0

Lời giải:

a) Ta có d(M,Δ)=8.2−6.3+782+(−6)2=12 .

Vậy khoảng cách từ điểm M(2; 3) đến đường thẳng ∆ là: 12 .

b) Ta có d(M,Δ)=4.0+9.1−2042+92=119797 .

Vậy khoảng cách từ điểm M(0;1) đến đường thẳng ∆ là: 119797 .

c) Ta có d(M,Δ)=3.1−532=23 .

Vậy khoảng cách từ điểm M(1; 1) đến đường thẳng ∆ là: 23 .

d) Ta có d(M,Δ)=4−2512=21 .

Vậy khoảng cách từ điểm M(4; 9) đến đường thẳng ∆ là: 21.

Bài 9 trang 66 SBT Toán 10 Tập 2: Tìm c để đường thẳng Δ:4x−3y+c=0  tiếp xúc với đường tròn (C) có tâm J(1; 2) và bán kính R = 3.

Lời giải:

Vì đường thẳng ∆ tiếp xúc với đường tròn (C) nên ta có  d(J,Δ)=R

 ⇔4.1−3.2+c42+(−3)2=3

 ⇔−2+c=15(1)−2+c=−15(2)

Xét phương trình (1) ta có – 2 + c = 15 ⇔  c = 17

Xét phương trình (2) ta có – 2 + c = – 15 ⇔  c = – 13

Vậy c = 17 hoặc c = – 13 thoả mãn bài toán.

Bài 10 trang 66 SBT Toán 10 Tập 2:  Tính khoảng cách giữa hai đường thẳng:

Δ:6x+8y−11=0 và Δ‘:6x+8y−1=0

Lời giải:

Ta có ∆ và ∆’ có vectơ pháp tuyến lần lượt là n1→  (6; 8) và n2→ (6; 8) hai vectơ này cùng phương. Do đó ∆ và ∆’ song song hoặc trùng nhau.

Dễ dàng nhận thấy ∆ và ∆’ song song với nhau, thật vậy:

Ta lấy  M0;118 thuộc ∆, thay tọa độ điểm M0;118  vào phương trình ∆’ ta được:

6.0 + 8. 118 – 1 = 10 ≠ 0 nên M ∉ ∆’.

Khi đó, ta có: d(Δ,Δ‘)=d(M,Δ‘)=6.0+8.118−162+82=1 .

Vậy khoảng cách giữa hai đường thẳng ∆ và ∆’ bằng 1.

Bài 11 trang 66 SBT Toán 10 Tập 2: Một trạm viễn thông S có toạ độ (5; 1). Một người đang ngồi trên chiếc xe khách chạy trên đoạn cao tốc có dạng một đường thẳng  có phương trình 12x + 5y – 20 = 0. Tính khoảng cách ngắn nhất giữa người đó và trạm viễn thông S. Biết rằng mỗi đơn vị độ dài tương ứng với 1 km.

Lời giải:

Sách bài tập Toán 10 Bài 2: Đường thẳng trong mặt phẳng tọa độ - Chân trời sáng tạo (ảnh 1)

Giả sử người ngồi trên xe khách là điểm M đang di chuyển trên đường cao tốc có dạng là đường thẳng ∆ như hình vẽ. Ta thấy khoảng cách ngắn nhất giữa người đó và trạm viễn thông S khi người đó di chuyển đến điểm C và SC ⊥  ∆. Vậy khoảng cách ngắn nhất giữa người đó và trạm viễn thông S bằng đoạn SC = d(S, ∆).

Ta có  d(S,Δ)=12.5+5.1−20122+52=4513

Vậy khoảng cách ngắn nhất giữa người đó và trạm viễn thông S bằng 4513  km.

Xem thêm các bài giải SBT Toán 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 1: Tọa độ của vectơ

Bài 3: Đường tròn trong mặt phẳng tọa độ

Bài 4: Ba đường conic trong mặt phẳng tọa độ

Bài tập cuối chương 9

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

15 câu Trắc nghiệm Số nguyên tố. Hợp số (Cánh diều) có đáp án 2023 – Toán 6

Next post

Bài giảng điện tử Số nguyên tố. Hợp số | Cánh diều Giáo án PPT Toán 6

Bài liên quan:

20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10

Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10

Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới

Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10

Trắc nghiệm Toán 10 Kết nối tri thức có đáp án

Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)

Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10

Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề

Leave a Comment Hủy

Mục lục

  1. 20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  2. Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  3. Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới
  4. Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10
  5. Trắc nghiệm Toán 10 Kết nối tri thức có đáp án
  6. Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)
  7. Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10
  8. Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề
  9. Giáo án Toán 10 Kết nối tri thức (cả năm) mới nhất 2023
  10. Chuyên đề Toán 10 Kết nối tri thức | Giải bài tập Chuyên đề học tập Toán 10 hay, chi tiết
  11. Sách bài tập Toán 10 Kết nối tri thức | Giải SBT Toán 10 | Giải sách bài tập Toán 10 Tập 1, Tập 2 hay nhất | SBT Toán 10 Kết nối tri thức | SBT Toán 10 KNTT
  12. Tổng hợp Lý thuyết Toán lớp 10 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 10 | Tổng hợp kiến thức Toán 10 chương trình mới
  13. Giải sgk Toán 10 Kết nối tri thức | Giải Toán 10 | Giải Toán lớp 10 | Giải bài tập Toán 10 hay nhất | Giải Toán 10 Tập 1, Tập 2 Kết nối tri thức
  14. Sách bài tập Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  15. Giải SGK Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  16. 20 câu Trắc nghiệm Tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  17. Lý thuyết Tập hợp và các phép toán trên tập hợp (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  18. Bài giảng điện tử Tập hợp và các phép toán trên tập hợp | Kết nối tri thức Giáo án PPT Toán 10
  19. Giáo án Toán 10 Bài 2 (Kết nối tri thức 2023): Tập hợp và các phép toán trên tập hợp
  20. Sách bài tập Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  21. Giải SGK Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  22. 30 câu Trắc nghiệm Chương 1: Mệnh đề và tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  23. Lý thuyết Toán 10 Chương 1 (Kết nối tri thức 2023): Mệnh đề và Tập hợp hay, chi tiết
  24. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 1
  25. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  26. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  27. 20 câu Trắc nghiệm Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  28. Lý thuyết Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  29. Bài giảng điện tử Bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  30. Giáo án Toán 10 Bài 3 (Kết nối tri thức 2023): Bất phương trình bậc nhất hai ẩn
  31. Sách bài tập Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
  32. Giải SGK Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
  33. Lý thuyết Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  34. Bài giảng điện tử Hệ bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  35. Giáo án Toán 10 Bài 4 (Kết nối tri thức 2023): Hệ bất phương trình bậc nhất hai ẩn
  36. 20 câu Trắc nghiệm Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  37. Sách bài tập Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  38. Giải SGK Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  39. Lý thuyết Toán 10 Chương 2 (Kết nối tri thức 2023): Bất phương trình và hệ phương trình bậc nhất hai ẩn hay, chi tiết
  40. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 2
  41. 30 câu Trắc nghiệm Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  42. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  43. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  44. Lý thuyết Giá trị lượng giác của một góc từ 0 đến 180 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  45. Bài giảng điện tử Giá trị lượng giác của một góc từ 0 độ đến 180 độ | Kết nối tri thức Giáo án PPT Toán 10
  46. Giáo án Toán 10 Bài 5 (Kết nối tri thức 2023): Giá trị lượng giác của một góc từ 0 độ đến 180 độ
  47. 20 câu Trắc nghiệm Giá trị lượng giác của 1 góc từ 0° đến 180° (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  48. Sách bài tập Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0° đến 180°
  49. Giải SGK Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0 đến 180
  50. Lý thuyết Hệ thức lượng trong tam giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  51. Bài giảng điện tử Hệ thức lượng trong tam giác | Kết nối tri thức Giáo án PPT Toán 10
  52. Giáo án Toán 10 Bài 6 (Kết nối tri thức 2023): Hệ thức lượng trong tam giác

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán