Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 10

Sách bài tập Toán 10 Bài 6 (Kết nối tri thức): Hệ thức lượng trong tam giác

By admin 13/10/2023 0

Giải SBT Toán lớp 10 Bài 6: Hệ thức lượng trong tam giác

Giải SBT Toán 10 trang 38 Tập 1

Bài 3.7 trang 38 SBT Toán 10 Tập 1: Cho tam giác ABC có A^=45°,C^=30° và c = 12.

a) Tính độ dài các cạnh còn lại của ta m giác.

b) Tính độ dài bán kính đường tròn ngoại tiếp của tam giác.

c) Tính diện tích của tam giác.

d) Tính độ dài các đường cao của tam giác.

Lời giải:

Sách bài tập Toán 10 Bài 6: Hệ thức lượng trong tam giác - Kết nối tri thức (ảnh 1)

a) Xét DABC có A^+B^+C^=180°

⇒B^=180°−A^−C^=180°−45°−30°=105°.

Áp dụng định lí sin ta có: asinA=bsinB=csinC

Suy ra:

• a=csinC.sinA=12sin30°.sin45°

⇒a=1212.22=122;

• b=csinC.sinB=12sin30°.sin105°

⇒b=1212.6+24=66+62.

Vậy a=122;b=66+62.

b) Theo định lí sin ta có csinC=2R

⇒R=c2sinC=122.sin30°=12.

Vậy bán kính đường tròn ngoại tiếp tam giác ABC bằng 12.

c) Áp dụng công thức diện tích tam giác ta có:

S=12.bcsinA=12.66+62.12.sin45°

=6.66+62.22=363+36.

Vậy diện tích tam giác ABC bằng 363+36.

d) Áp dụng công thức diện tích tam giác ta có:

S=12aha=12bhb=12chc

Do đó:

• ha=2Sa=2.363+36122=36+32;

• hb=2Sb=2.363+3666+62=62;

• hc=2Sc=2.363+3612=63+6.

Vậy độ dài các đường cao ha, hb, hc của tam giác ABC lần lượt là ha=36+32; hb=62; hc=63+6.

Bài 3.8 trang 38 SBT Toán 10 Tập 1: Tam giác ABC có a = 19, b = 6 và c = 15.

a) Tính cosA.

b) Tính diện tích tam giác.

c) Tính độ dài đường cao hc.

d) Tính độ dài bán kính đường tròn nội tiếp của tam giác.

Lời giải:

a) Áp dụng định lí côsin cho DABC ta có:

a2 = b2 + c2 – 2bc.cosA

⇒cosA =b2+c2−a22bc=62+152−1922.6.15=−59.

Vậy cosA = –59

b) Tam giác ABC có a = 19, b = 6 và c = 15

Khi đó:

• p=a+b+c2=19+6+152=20.

• p – a = 1;

• p – b = 14;

• p – c = 5.

Áp dụng công thức Heron ta có:

S=pp−ap−bp−c=20.1.14.5=1014.

Vậy diện tích DABC bằng 1014.

c) Áp dụng công thức diện tích tam giác ta có:

Sb=12chc

⇒hc=2Sc=2.101415=4143.

Vậy độ dài đường cao hc=4143.

d) Áp dụng công thức diện tích tam giác ta có:

S = pr ⇒r=Sp=101420=142.

Vậy bán kính đường tròn nội tiếp tam giác ABC bằng 142.

Giải SBT Toán 10 trang 39 Tập 1

Bài 3.9 trang 39 SBT Toán 10 Tập 1: Cho tam giác ABC có a = 4, C^=60°, b = 5.

a) Tính các góc và cạnh còn lại của tam giác.

b) Tính diện tích của tam giác.

c) Tính độ dài đường trung tuyến kẻ từ đỉnh A của tam giác.

Lời giải:

a) Áp dụng định lí côsin cho DABC ta có:

c2 = a2 + b2 – 2ab.cosC

=> c2 = 42 + 52 – 2.4.5.cos60°

= 16 + 25 – 40.12 = 21.

=> c = 21

Áp dụng định lí sin ta có: asinA=bsinB=csinC

Do đó:

• sinB=sinCc.b=sin60°21.5=5714.

⇒B^≈70°53‘36‘‘

• sinA=sinCc.a=sin60°21.4=277.

⇒A^≈49°6‘24‘‘

Vậy c=21;A^≈49°6‘24‘‘;B^≈70°53‘36‘‘.

b) Áp dụng công thức tính diện tích tam giác ta có:

S=12.absinC=12.4.5.sin60°=53.

Vậy diện tích tam giác ABC bằng 53.

c) Áp dụng công thức tính độ dài đường trung tuyến trong phần Nhận xét của Ví dụ 3, trang 37, SBT, Toán 10, Tập một ta có:

ma2=b2+c22−a24=52+2122−424=19.

⇒ma=19.

Vậy độ dài đường trung tuyến kẻ từ đỉnh A của tam giác ABC bằng 19

Bài 3.10 trang 39 SBT Toán 10 Tập 1: Một tàu cá xuất phát từ đảo A, chạy 50 km theo hướng N24°E đến đảo B để lấy thêm ngư cụ, rồi chuyển hướng N36°W chạy tiếp 130 km đến ngư trường C.

a) Tính khoảng cách từ vị trí xuất phát A đến C (làm tròn đến hàng đơn theo đơn vị đo kilômét).

b) Tìm hướng từ A đến C (làm tròn đến hàng đơn vị, theo đơn vị độ).

Lời giải:

Ba vị trí đảo A, đảo B và ngư trường C được mô tả như hình vẽ đưới đây:

Sách bài tập Toán 10 Bài 6: Hệ thức lượng trong tam giác - Kết nối tri thức (ảnh 1)

a) Ta có:

ABC^=90°−24°+90°−36°=120°

Áp dụng định lí côsin cho tam giác ABC ta có:

AC2 = AB2 + BC2 – 2.AB.BC.cosABC^

= 502 + 1302 – 2.50.130.–12 = 25 900

⇒AC=10259≈161km 

Vậy khoảng cách từ đảo A đến ngư trường C khoảng 161 km.

b) Áp dụng định lí sin cho tam giác ABC ta có:

BCsinBAC^=ACsinABC^

⇒sinBAC^=sinABC^AC.BC

⇒sinBAC^≈sin120°161.130≈0,699

⇒BAC^≈44°.

Do đó AC có hướng chếch về hướng W một góc 44° – 24° = 22° so với hướng N.

Vậy từ A đến C có hướng N20°W.

Bài 3.11 trang 39 SBT Toán 10 Tập 1: Một tàu du lịch xuất phát từ bãi biển Đồ Sơn (Hải Phòng), chạy theo hướng N80°E với vận tốc 20 km/h. Sau khi đi được 30 phút, tàu chuyển sang hướng E20°S giữ nguyên vận tốc và chạy tiếp 36 phút nữa đến đảo Cát Bà. Hỏi khi đó tàu du lịch cách vị trí xuất phát bao nhiêu kilômet?

Lời giải:

Giả sử tàu du lịch xuất phát từ điểm A, chuyển động theo hướng N80°E tới B sau đó chuyển hướng E20°S tới điểm C như hình vẽ dưới đây.

Sách bài tập Toán 10 Bài 6: Hệ thức lượng trong tam giác - Kết nối tri thức (ảnh 1)

Ta có: ABC^=180°−10°−20°=150°

Tàu chạy từ A đến B với vận tốc 20 km/h trong 30 phút (= 0,5 giờ) nên:

AB = 20.0,5 = 10 (km).

Tàu chạy từ B đến C với vận tốc 20 km/h trong 36 phút (= 0,6 giờ) nên:

BC = 20.0,6 = 12 (km)

Áp dụng định lí côsin cho tam giác ABC ta được:

AC2 = AB2 + BC2 – 2.AB.BC.cosABC^

= 102 + 122 – 2.10.12.cos150°

= 100 + 144 – 240.−32 = 452 (km)

Suy ra AC≈452≈21,26km.

Vậy khi tới đảo Cát Bà thì tàu du lịch cách vị trí xuất phát (bãi biển Đồ Sơn) khoảng 21,26 km.

Bài 3.12 trang 39 SBT Toán 10 Tập 1: Một cây cổ thụ mọc thẳng đứng bên lề một con dốc có độ dốc 10° so với phương nằm ngang. Từ một điểm dưới chân dốc, cách gốc cây 31 m người ta nhìn đỉnh ngọn cây dưới một góc 40° so với phương nằm ngang. Hãy tính chiều cao của cây.

Lời giải:

Cây cổ thụ và con dốc được mô tả như hình vẽ dưới đây:

Sách bài tập Toán 10 Bài 6: Hệ thức lượng trong tam giác - Kết nối tri thức (ảnh 1)

Vì con dốc có độ dốc 10° so với phương nằm ngang, người nhìn nhìn đỉnh ngọn cây dưới một góc 40° so với phương nằm ngang nên ta có BAC^=40°−10°=30°.

Và ACB^=90°−40°=50°

Áp dụng định lí sin cho tam giác ABC ta có:

ABsinACB^=BCsinBAC^

⇒BC=ABsinACB^.sinBAC^

⇒BC=31sin50°.sin30°≈20,23m

Vậy chiều cao của cây khoảng 20,23 m.

Bài 3.13 trang 39 SBT Toán 10 Tập 1: Cho tam giác ABC. Chứng minh rằng:

a) cotA+cotB+cotC=a2+b2+c24S;

b) ma2+mb2+mc2=34a2+b2+c2.

Lời giải:

a) Áp dụng định lí côsin ta có:

cosA = b2+c2−a22bc        (1)

Áp dụng công thức tính diện tích tam giác ta có:

S=12bc.sinA

⇒sinA=2Sbc                  (2)

Từ (1) và (2) ta có:

cotA = cosAsinA=b2+c2−a22bc:2Sbc

⇒cotA=b2+c2−a22bc.bc2S

⇒cotA=b2+c2−a24S.

Chứng minh tương tự ta cũng có:

cotB=a2+c2−b24S và  cotC=a2+b2−c24S

Do đó cotA + cotB + cotC

=b2+c2−a24S+a2+c2−b24S+a2+b2−c24S

=a2+b2+c24S

Vậy cotA+cotB+cotC=a2+b2+c24S.

b) Áp dụng công thức tính độ dài đường trung tuyến ta có:

ma2=b2+c22−a24; mb2=a2+c22−b24 và mc2=a2+b22−c24.

Do đó:

Sách bài tập Toán 10 Bài 6: Hệ thức lượng trong tam giác - Kết nối tri thức (ảnh 1)

Vậy ma2+mb2+mc2=34a2+b2+c2.

Bài 3.14 trang 39 SBT Toán 10 Tập 1: Cho tam giác ABC có hai trung tuyến kẻ từ A và B vuông góc.

Chứng minh rằng:

a) a2 + b2 = 5c2;

b) cotC= 2 (cot A + cot B).

Lời giải:

a)

Sách bài tập Toán 10 Bài 6: Hệ thức lượng trong tam giác - Kết nối tri thức (ảnh 1)

Gọi M, N lần lượt là trung điểm của các cạnh BC, AC.

Gọi G là trọng tâm của tam giác ABC.

Khi đó AG=23AM và BG=23BN.

Áp dụng định lí Pythagore cho tam giác ABG vuông tại G (do AM ⊥ BN) có:

c2 = AB2 = AG2 + BG2

=49.AM2+49.BN2

Mà AM, BN là hai đường trung tuyến kẻ từ A và B của tam giác ABC.

Do đó theo công thức tính độ dài đường trung tuyến của tam giác ta có:

AM2=ma2=b2+c22−a24 và BN2=mb2=a2+c22−b24.

Suy ra c2 = 49.b2+c22−a24+49.a2+c22−b24

=49.b2+c22−a24+a2+c22−b24

=49.a2+b24+c2

Þ c2 =49.a2+b24+c2

Þ 9c2 = a2 + b2 + 4c2

Þ 5c2 = a2 + b2.

b) Theo chứng minh phần a), Bài 3.13 ta có:

cotC=a2+b2−c24S

Mà 5c2 = a2 + b2 (chứng minh phần a))

Do đó cotC=5c2−c24S=4c24S=c2S       (1)

Mặt khác:

cotA+cotB=b2+c2−a24S+a2+c2−b24S 

Þ cotA + cotB =2c24S=c22S

Þ 2(cotA + cotB) =c2S   (2)

Từ (1) và (2) ta có: cotC = 2(cotA + cotB) = c2S

Vậy cotC = 2(cotA + cotB).

Bài 3.15 trang 39 SBT Toán 10 Tập 1: Cho tam giác ABC có các góc thoả mãn sinA1=sinB2=sinC3. Tính số đo các góc của tam giác.

Lời giải:

Áp dụng định lí sin cho tam giác ABC ta có:

 

Sách bài tập Toán 10 Bài 6: Hệ thức lượng trong tam giác - Kết nối tri thức (ảnh 1)

 

Theo bài ta có: 

Sách bài tập Toán 10 Bài 6: Hệ thức lượng trong tam giác - Kết nối tri thức (ảnh 1)

Đặt a1=b2=c3=t

Suy ra a = t; b = 2t; c = t3

Suy ra a2 = t2; b = 4t2; c = 3t2.

Ta thấy: a2 + c2 = b2 = 4t2

Theo định lí Pythagore đảo ta có tam giác ABC vuông tại B.

=> sinB = 1.

⇒sinA1=12=sinC3.

 ⇒sinA=12 và sinC=32

=> A^=30° và C^=60°

Vậy A^=30°;B^=90° và C^=60°.

Bài 3.16 trang 39 SBT Toán 10 Tập 1: Cho tam giác ABC có S = 2R2.sin A.sinB. Chứng minh rằng tam giác ABC là một tam giác vuông.

Lời giải:

Áp dụng định lí sin cho tam giác ABC ta có:

asinA=bsinB=csinC=2R

=> a = 2R.sinA; b = 2R.sinB và c = 2R.sinC.

Theo công thức tính diện tích tam giác ta có:

S=abc4R=2RsinA.2RsinB.2RsinC4R

⇒S=8R3.sinA.sinB.sinC4R

Þ S = 2R2.sin A.sinB.sinC.

Mà theo bài S = 2R2.sin A.sinB.

Do đó sinC = 1

⇒C^=90°.

Vậy tam giác ABC vuông tại C.

Xem thêm các bài giải SBT Toán 10 Kết nối tri thức hay, chi tiết khác:

Bài 5: Giá trị lượng giác của một góc từ 0° đến 180°

Bài tập cuối chương 3

Bài 7: Các khái niệm mở đầu

Bài 8: Tổng và hiệu của hai vectơ

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Bộ 10 đề thi giữa kì 2 Kinh tế Pháp luật 11 Chân trời sáng tạo có đáp án năm 2024

Next post

Lý thuyết Phép nhân số nguyên (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 6

Bài liên quan:

20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10

Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10

Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới

Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10

Trắc nghiệm Toán 10 Kết nối tri thức có đáp án

Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)

Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10

Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề

Leave a Comment Hủy

Mục lục

  1. 20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  2. Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  3. Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới
  4. Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10
  5. Trắc nghiệm Toán 10 Kết nối tri thức có đáp án
  6. Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)
  7. Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10
  8. Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề
  9. Giáo án Toán 10 Kết nối tri thức (cả năm) mới nhất 2023
  10. Chuyên đề Toán 10 Kết nối tri thức | Giải bài tập Chuyên đề học tập Toán 10 hay, chi tiết
  11. Sách bài tập Toán 10 Kết nối tri thức | Giải SBT Toán 10 | Giải sách bài tập Toán 10 Tập 1, Tập 2 hay nhất | SBT Toán 10 Kết nối tri thức | SBT Toán 10 KNTT
  12. Tổng hợp Lý thuyết Toán lớp 10 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 10 | Tổng hợp kiến thức Toán 10 chương trình mới
  13. Giải sgk Toán 10 Kết nối tri thức | Giải Toán 10 | Giải Toán lớp 10 | Giải bài tập Toán 10 hay nhất | Giải Toán 10 Tập 1, Tập 2 Kết nối tri thức
  14. Sách bài tập Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  15. Giải SGK Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  16. 20 câu Trắc nghiệm Tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  17. Lý thuyết Tập hợp và các phép toán trên tập hợp (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  18. Bài giảng điện tử Tập hợp và các phép toán trên tập hợp | Kết nối tri thức Giáo án PPT Toán 10
  19. Giáo án Toán 10 Bài 2 (Kết nối tri thức 2023): Tập hợp và các phép toán trên tập hợp
  20. Sách bài tập Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  21. Giải SGK Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  22. 30 câu Trắc nghiệm Chương 1: Mệnh đề và tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  23. Lý thuyết Toán 10 Chương 1 (Kết nối tri thức 2023): Mệnh đề và Tập hợp hay, chi tiết
  24. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 1
  25. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  26. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  27. 20 câu Trắc nghiệm Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  28. Lý thuyết Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  29. Bài giảng điện tử Bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  30. Giáo án Toán 10 Bài 3 (Kết nối tri thức 2023): Bất phương trình bậc nhất hai ẩn
  31. Sách bài tập Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
  32. Giải SGK Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
  33. Lý thuyết Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  34. Bài giảng điện tử Hệ bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  35. Giáo án Toán 10 Bài 4 (Kết nối tri thức 2023): Hệ bất phương trình bậc nhất hai ẩn
  36. 20 câu Trắc nghiệm Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  37. Sách bài tập Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  38. Giải SGK Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  39. Lý thuyết Toán 10 Chương 2 (Kết nối tri thức 2023): Bất phương trình và hệ phương trình bậc nhất hai ẩn hay, chi tiết
  40. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 2
  41. 30 câu Trắc nghiệm Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  42. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  43. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  44. Lý thuyết Giá trị lượng giác của một góc từ 0 đến 180 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  45. Bài giảng điện tử Giá trị lượng giác của một góc từ 0 độ đến 180 độ | Kết nối tri thức Giáo án PPT Toán 10
  46. Giáo án Toán 10 Bài 5 (Kết nối tri thức 2023): Giá trị lượng giác của một góc từ 0 độ đến 180 độ
  47. 20 câu Trắc nghiệm Giá trị lượng giác của 1 góc từ 0° đến 180° (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  48. Sách bài tập Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0° đến 180°
  49. Giải SGK Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0 đến 180
  50. Lý thuyết Hệ thức lượng trong tam giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  51. Bài giảng điện tử Hệ thức lượng trong tam giác | Kết nối tri thức Giáo án PPT Toán 10
  52. Giáo án Toán 10 Bài 6 (Kết nối tri thức 2023): Hệ thức lượng trong tam giác

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán