Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 10

Sách bài tập Toán 10 Bài tập cuối chương 5 (Chân trời sáng tạo)

By admin 15/10/2023 0

Giải SBT Toán lớp 10 Bài tập cuối chương 5

Giải SBT Toán 10 trang 101 Tập 1

A. Trắc nghiệm

Bài 1 trang 101 SBT Toán 10 Tập 1: Cho hình chữ nhật ABCD có AB = 3, BC = 4. Độ dài của vectơ AC→ là:

A. 5;

B. 6;

C. 7;

D. 9.

Lời giải:

Đáp án đúng là A

Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Chọn đáp án A.

Bài 2 trang 101 SBT Toán 10 Tập 1: Cho lục giác đều ABCDEF có tâm O. Số các vectơ bằng vectơ OC→ có điểm đầu và điểm cuối là các đỉnh của lục giác là:

A. 2;

B. 3;

C. 4;

D. 6.

Lời giải:

Đáp án đúng là A

Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Các vectơ bằng vectơ OC→ có điểm đầu và điểm cuối là các đỉnh của lục giác là: AB→, ED→.

Vậy có 2 vectơ thỏa mãn yêu cầu.

Bài 3 trang 101 SBT Toán 10 Tập 1: Cho ba điểm A, B, C. Khẳng định nào sau đây là đúng?

Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Lời giải:

Đáp án đúng là C

Theo quy tắc ba điểm ta có: AB→+CA→=CB→.

Như vậy khẳng định C đúng. Khẳng định A, B, D sai.

Bài 4 trang 101 SBT Toán 10 Tập 1: Cho hai điểm phân biệt A và B. Điều kiện để điểm I là trung điểm của đoạn thẳng AB là:

Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Lời giải:

Đáp án đúng là C

I là trung điểm của đoạn thẳng AB khi và chỉ khi IA→ + IB→ = 0 hay IA→=−IB→.

Vậy chọn đáp án C.

Bài 5 trang 101 SBT Toán 10 Tập 1: Cho tam giác ABC có G là trọng tâm và I là trung điểm của đoạn thẳng BC. Khẳng định nào sau đây là đúng?

Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Lời giải:

Đáp án đúng là C

Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Ta có:

GA→=−2GI→. Khẳng định A sai.

IG→=13IA→. Khẳng định B sai.

I là trung điểm của BC nên GB→+GC→=2GI→=−GA→. Khẳng định C đúng. Khẳng định D sai.

Vậy chọn đáp án C.

Giải SBT Toán 10 trang 102 Tập 1

Bài 6 trang 102 SBT Toán 10 Tập 1: Cho hình bình hành ABCD. Khẳng định nào sau đây là đúng?

Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Lời giải:

Đáp án đúng là A

Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Ta có:

Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)( vì Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)). Vậy khẳng định A đúng. Khẳng định C sai.

Ta có: Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1). Do đó khẳng định B sai.

Ta lại có: Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1). Do đó khẳng định D sai.

Vậy chọn đáp án A.

Bài 7 trang 102 SBT Toán 10 Tập 1: Cho tam giác ABC. Đặt a→=BC→, b→=AC→​. Các cặp vectơ nào sau đây cùng phương?

Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Lời giải:

Đáp án đúng là C

Ta có thể thấy:

Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Như vậy Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1) và Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1) là cặp vectơ cùng phương.

Bài 8 trang 102 SBT Toán 10 Tập 1: Cho tam giác ABC vuông ở A và có B^ = 50°. Khẳng định nào sau đây là sai?

Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Lời giải:

Đáp án đúng là D

Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Ta có: AB→,BC→=−BA→,BC→=−BA→,BC→ là góc kề bù với ABC^ 

⇒ AB→,BC→ = 180° – 50° = 130°. Khẳng định A đúng.

BC→,AC→ = CB→,CA→ = ACB^ = 90° – 50° = 40°. Khẳng định B đúng.

AB→,CB→ = BA→,BC→ = ABC^ = 50°. Khẳng định C đúng.

AC→,CB→=−CA→,CB→=−CA→,CB→ là góc kề bù với ACB^ 

⇒ AC→,CB→ = 180° – 40° = 140°. Khẳng định D sai.

Vậy chọn đáp án D.

Bài 9 trang 102 SBT Toán 10 Tập 1: Cho a→ và b→ là hai vectơ cùng hướng và đều khác vectơ 0→. Khẳng định nào sau đây là đúng?

Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Lời giải:

Đáp án đúng là A

Ta có:

Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Do a→ và b→ là hai vectơ cùng hướng và đều khác vectơ 0→ nên Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1) = cos0° = 1.

Vậy Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1). Đáp án A đúng.

Bài 10 trang 102 SBT Toán 10 Tập 1: Cho tam giác ABC vuông tại A. Khẳng định nào sau đây là sai?

Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Lời giải:

Đáp án đúng là D

Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Do AB ⊥ AC nên Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Ta lại có Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1) (vì B^ là góc nhọn nên cosB^ > 0). Do đó AB→.AC→<BA→.BC→​.

Khẳng định A đúng.

AC→,CB→=−CA→,CB→=−CA→,CB→ là góc tù nên AC→.CB→=AC→.CB→.cosAC→.CB→ < 0;

AC→.BC​→ là góc nhọn nên AC→.BC→=AC→.BC→.cosAC→.BC→> 0. Suy ra AC→.CB→<AC→.BC→​. Khẳng định B đúng.

AB→,BC→=−BA→,BC→=−BA→,BC→ là góc tù nên AB→.BC→ < 0; CA→.CB→ là góc nhọn nên CA→.CB→ > 0. Suy ra AB→.BC→<CA→.CB→. Khẳng định C đúng.

AC→.BC→ là góc nhọn nên AC→.BC→ > 0; BC→.AB→ là góc tù nên BC→.AB→ < 0. Suy ra AC→.BC→>BC→.AB→.

Khẳng định D sai.

Vậy chọn đáp án D.

B. Tự luận

Bài 1 trang 102 SBT Toán 10 Tập 1: Cho ba điểm A, B, C phân biệt thẳng hàng. Trong trường hợp nào thì hai vectơ AB→ và AC→:

a) cùng hướng?

b) ngược hướng?

Lời giải:

a) Hai vectơ AB→ và AC→ cùng hướng khi B nằm giữa A và C.

b) Hai vectơ AB→ và AC→ ngược hướng khi A nằm giữa B và C.

Bài 2 trang 102 SBT Toán 10 Tập 1: Cho ba vectơ Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1) cùng phương. Chứng tỏ rằng có ít nhất hai vectơ cùng hướng trong ba vectơ đó.

Lời giải:

Trong ba vectơ Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1) chọn hai vectơ tùy ý:

– Nếu chúng cùng hướng thì đó là hai vectơ cần tìm.

– Nếu chúng ngược hướng thì vectơ còn lại sẽ cùng hướng với một trong hai vectơ đã chọn.

Bài 3 trang 102 SBT Toán 10 Tập 1: Cho tam giác ABC nội tiếp trong đường tròn (O). Gọi H là trực tâm tam giác ABC và B’ là điểm đối xứng với B qua tâm O. Hãy so sánh các vectơ AH→ và B’C→, AB’→ và HC→.

Lời giải:

Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Do BB’ là đường kính nên BCB’^ = 90° ( góc nội tiếp chắn nửa đường tròn )

⇒ BC ⊥ B’C.

H là trực tâm tam giác ABC nên BC ⊥ AH.

Suy ra AH // B’C ( do đều vuông góc với BC ).

Do BB’ là đường kính nên BAB’^= 90° ( góc nội tiếp chắn nửa đường tròn )

⇒ BA ⊥ B’A.

H là trực tâm tam giác ABC nên CH ⊥ BA.

Suy ra CH // B’A ( do đều vuông góc với BA ).

Như vậy AB’CH là hình bình hành ( DHNB hình bình hành )

Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Giải SBT Toán 10 trang 103 Tập 1

Bài 4 trang 103 SBT Toán 10 Tập 1: Chứng minh rằng với hai vectơ không cùng phương a→ và b→, ta có: a→−b→<a→+b→<a→+b→.

Lời giải:

Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Vẽ ba điểm O, A, B sao cho Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1). Ta có Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Trong tam giác OAB ta có bất đẳng thức:

OA−AB ≤ OB ≤ OA + AB

Suy ra  a→−b→<a→+b→<a→+b→.

Bài 5 trang 103 SBT Toán 10 Tập 1: Cho hình ngũ giác đều ABCDE tâm O. Chứng minh rằng: OA→+OB→+OC→+OD→+OE→=0→.

Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Lời giải:

Đặt u→ = OA→+OB→+OC→+OD→+OE→

Ta có: u→ = OA→+OB→+OE→+OC→+OD→

Do OA nằm trên đường phân giác của BOE^ và DOC^ của hai tam giác cân BOE và DOC nên ta có các vectơ OB→+OE→ và OC→+OD→ nằm trên đường thẳng OA, suy ra u→ nằm trên đường thẳng OA.

Chứng minh tương tự ta có u→ cũng đồng thời nằm trên đường thẳng OB. Như vậy u→ = 0→

Vậy  Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Bài 6 trang 103 SBT Toán 10 Tập 1: Cho tam giác ABC, gọi A’ là điểm đối xứng với B qua A, gọi B’ là điểm đối xứng với C qua B, gọi C’ là điểm đối xứng với A qua C. Chứng minh rằng với một điểm O tùy ý, ta có: OA→+OB→+OC→=OA’→+OB’→+OC’→.

Lời giải:

A’ là điểm đối xứng với B qua A nên AB→ = AA’→.

B’ là điểm đối xứng với C qua B nên BC→ = BB’→.

C’ là điểm đối xứng với A qua C nên CA→ = CC’→.

Ta có:

Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Vậy OA→+OB→+OC→=OA’→+OB’→+OC’→.

Bài 7 trang 103 SBT Toán 10 Tập 1: Tam giác ABC là tam giác gì nếu nó thỏa mãn một trong các điều kiện sau đây?

a) AB→+AC→=AB→−AC→;

b) Vectơ AB→+AC→ vuông góc với vectơ AB→+CA→.

Lời giải:

a) Gọi M là trung điểm BC ta có:

Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Khi đó tam giác ABC vuông tại A.

b) Vectơ AB→+AC→​vuông góc với vectơ AB→+CA→ ⇔ AB→+AC→​.AB→+CA→ = 0→

hay AB→+AC→​.AB→–AC→​ = 0→.

Suy ra AB2  – AC2 = 0 hay AB = AC. Khi đó tam giác ABC cân tại A.

Vậy Vectơ AB→+AC→​ vuông góc với vectơ AB→+CA→​ khi tam giác ABC cân tại A.

Bài 8 trang 103 SBT Toán 10 Tập 1: Tứ giác ABCD là tứ giác gì nếu nó thỏa mãn một trong các điều kiện sau đây?

a) AC→−BC→=DC→;

b) DB→=kDC→+DA→.

Lời giải:

a) Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)⇒ ABCD là hình bình hành.

b) Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Như vậy ta có ABCD là hình thang.

Bài 9 trang 103 SBT Toán 10 Tập 1: Cho tam giác ABC, trên cạnh AB lấy hai điểm M, N sao cho AM = MN = NB. Chứng minh rằng hai tam giác ABC và MNC có cùng trọng tâm.

Lời giải:

Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Ta có: MA = NB và hai vectơ ​MA→, NB→ cùng phương, ngược chiều ⇒ ​MA→ + NB→ = 0→

Gọi G là trọng tâm tam giác ABC.

Ta có: 

Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Vậy G cũng là trọng tâm tam giác MNC.

Vậy hai tam giác ABC và MNC có cùng trọng tâm.

Bài 10 trang 103 SBT Toán 10 Tập 1: Cho ba điểm O, M, N và số thực k. Lấy các điểm M’ và N’ sao cho OM’→=kOM→, ON’→=kON→. Chứng minh rằng: M’N’→=kMN→.

Lời giải:

Ta có:

Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Vậy Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1).

Bài 11 trang 103 SBT Toán 10 Tập 1: Cho tam giác ABC, O là điểm sao cho ba vectơ Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1) có độ dài bằng nhau và Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1). Tính các góc AOB^, BOC^, COA^.

Lời giải:

Ta có OA = OB = OC nên O là tâm đường tròn ngoại tiếp tam giác ABC.

Lại có Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1) nên O cũng là trọng tâm tam giác ABC.

Suy ra ABC là tam giác đều ( vì tâm đường tròn ngoại tiếp và trọng tâm trùng nhau).

⇒ AB = BC = CA.

Như vậy AOB^ = BOC​^= COA^ = 360°3 = 120° ( vì đều là góc ở tâm chắn các cung bằng nhau ).

Bài 12 trang 103 SBT Toán 10 Tập 1: Cho ngũ giác ABCDE. Gọi M, N, P, Q, R lần lượt là trung điểm các cạnh AB, BC, CD, DE, EA. Chứng minh hai tam giác EMP và NQR có cùng trọng tâm.

Lời giải:

Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Gọi G là trọng tâm tam giác NRQ, ta có Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

N là trung điểm của AB nên Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Tương tự ta có: Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1) và Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

( Do M, N lần lượt là trung điểm của AB và CD nên Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

và Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Suy ra G cũng là trọng tâm tam giác EMP.

Vậy hai tam giác EMP và NQR có cùng trọng tâm.

Xem thêm các bài giải SBT Toán 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 4: Tích vô hướng của hai vectơ

Bài 1: Số gần đúng và sai số

Bài 2: Mô tả và biểu diễn dữ liệu trên các bảng và biểu đồ

Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Sách bài tập Toán 6 Bài 1 (Chân trời sáng tạo): Hình có trục đối xứng

Next post

Lý thuyết Hình có trục đối xứng (Chân trời sáng tạo 2023) hay, chi tiết | Toán lớp 6

Bài liên quan:

20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10

Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10

Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới

Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10

Trắc nghiệm Toán 10 Kết nối tri thức có đáp án

Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)

Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10

Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề

Leave a Comment Hủy

Mục lục

  1. 20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  2. Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  3. Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới
  4. Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10
  5. Trắc nghiệm Toán 10 Kết nối tri thức có đáp án
  6. Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)
  7. Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10
  8. Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề
  9. Giáo án Toán 10 Kết nối tri thức (cả năm) mới nhất 2023
  10. Chuyên đề Toán 10 Kết nối tri thức | Giải bài tập Chuyên đề học tập Toán 10 hay, chi tiết
  11. Sách bài tập Toán 10 Kết nối tri thức | Giải SBT Toán 10 | Giải sách bài tập Toán 10 Tập 1, Tập 2 hay nhất | SBT Toán 10 Kết nối tri thức | SBT Toán 10 KNTT
  12. Tổng hợp Lý thuyết Toán lớp 10 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 10 | Tổng hợp kiến thức Toán 10 chương trình mới
  13. Giải sgk Toán 10 Kết nối tri thức | Giải Toán 10 | Giải Toán lớp 10 | Giải bài tập Toán 10 hay nhất | Giải Toán 10 Tập 1, Tập 2 Kết nối tri thức
  14. Sách bài tập Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  15. Giải SGK Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  16. 20 câu Trắc nghiệm Tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  17. Lý thuyết Tập hợp và các phép toán trên tập hợp (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  18. Bài giảng điện tử Tập hợp và các phép toán trên tập hợp | Kết nối tri thức Giáo án PPT Toán 10
  19. Giáo án Toán 10 Bài 2 (Kết nối tri thức 2023): Tập hợp và các phép toán trên tập hợp
  20. Sách bài tập Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  21. Giải SGK Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  22. 30 câu Trắc nghiệm Chương 1: Mệnh đề và tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  23. Lý thuyết Toán 10 Chương 1 (Kết nối tri thức 2023): Mệnh đề và Tập hợp hay, chi tiết
  24. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 1
  25. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  26. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  27. 20 câu Trắc nghiệm Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  28. Lý thuyết Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  29. Bài giảng điện tử Bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  30. Giáo án Toán 10 Bài 3 (Kết nối tri thức 2023): Bất phương trình bậc nhất hai ẩn
  31. Sách bài tập Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
  32. Giải SGK Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
  33. Lý thuyết Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  34. Bài giảng điện tử Hệ bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  35. Giáo án Toán 10 Bài 4 (Kết nối tri thức 2023): Hệ bất phương trình bậc nhất hai ẩn
  36. 20 câu Trắc nghiệm Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  37. Sách bài tập Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  38. Giải SGK Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  39. Lý thuyết Toán 10 Chương 2 (Kết nối tri thức 2023): Bất phương trình và hệ phương trình bậc nhất hai ẩn hay, chi tiết
  40. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 2
  41. 30 câu Trắc nghiệm Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  42. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  43. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  44. Lý thuyết Giá trị lượng giác của một góc từ 0 đến 180 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  45. Bài giảng điện tử Giá trị lượng giác của một góc từ 0 độ đến 180 độ | Kết nối tri thức Giáo án PPT Toán 10
  46. Giáo án Toán 10 Bài 5 (Kết nối tri thức 2023): Giá trị lượng giác của một góc từ 0 độ đến 180 độ
  47. 20 câu Trắc nghiệm Giá trị lượng giác của 1 góc từ 0° đến 180° (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  48. Sách bài tập Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0° đến 180°
  49. Giải SGK Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0 đến 180
  50. Lý thuyết Hệ thức lượng trong tam giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  51. Bài giảng điện tử Hệ thức lượng trong tam giác | Kết nối tri thức Giáo án PPT Toán 10
  52. Giáo án Toán 10 Bài 6 (Kết nối tri thức 2023): Hệ thức lượng trong tam giác

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán