Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Trắc nghiệm Toán 11

Trong mặt phẳng (α) cho tam giác ABC. Từ ba đỉnh của tam giác này ta kẻ các nửa đường thẳng song song cùng chiều Ax, By, Cz không nằm trong (α). Trên Ax lấy đoạn AA' = a, trên By lấy đoạn BB' = b, trên Cz lấy đoạn CC' = c.a) Gọi I, J và K lần lượt là các giao điểm B'C', C'A' và A'B' với (α).Chứng minh rằng IBIC. JCJA.KAKB = 1b) Gọi G và G' lần lượt là trọng tâm của các tam giác ABC và A'B'C'.Chứng minh: GG′ // AA′.c) Tính GG' theo a, b, c

By admin 17/04/2023 0

Câu hỏi:

Trong mặt phẳng (α) cho tam giác ABC. Từ ba đỉnh của tam giác này ta kẻ các nửa đường thẳng song song cùng chiều Ax, By, Cz không nằm trong (α). Trên Ax lấy đoạn AA’ = a, trên By lấy đoạn BB’ = b, trên Cz lấy đoạn CC’ = c.a) Gọi I, J và K lần lượt là các giao điểm B’C’, C’A’ và A’B’ với (α).Chứng minh rằng IBIC. JCJA.KAKB = 1b) Gọi G và G’ lần lượt là trọng tâm của các tam giác ABC và A’B’C’.Chứng minh: GG′ // AA′.c) Tính GG’ theo a, b, c

Trả lời:

Giải sách bài tập Toán 11 | Giải sbt Toán 11a) CC′ // BB′ ⇒ ΔICC′ ∼ ΔIBB′Giải sách bài tập Toán 11 | Giải sbt Toán 11CC′ // AA′ ⇒ ΔJCC′ ∼ ΔJAA′Giải sách bài tập Toán 11 | Giải sbt Toán 11AA′ // BB′ ⇒ ΔKAA′ ∼ ΔKBB′Giải sách bài tập Toán 11 | Giải sbt Toán 11b) Gọi H và H’ lần lượt là trung điểm của các cạnh BC và B’C’. Vì HH’ là đường trung bình của hình thang BB’CC’ nên HH′ // BB′.Mà BB′ // AA′ suy ra HH′ // AA′Ta có: G ∈ AH và G′ ∈ A′H′ và ta có:Giải sách bài tập Toán 11 | Giải sbt Toán 11c) AH′ ∩ GG′ = M ⇒ GG′ = G′M + MGTa có: G′M // AA′ ⇒ ΔH′G′M ∼ ΔH′A′AGiải sách bài tập Toán 11 | Giải sbt Toán 11MG // HH′ ⇒ ΔAMG ∼ ΔAH′HGiải sách bài tập Toán 11 | Giải sbt Toán 11Mặt khác HH’ là đường trung bình của hình thang BB’CC’ nênGiải sách bài tập Toán 11 | Giải sbt Toán 11

====== **** mời các bạn xem câu tiếp bên dưới **** =====

  1. Cho tứ diện ABCD và điểm M nằm trong tam giác BCD.a) Dựng đường thẳng qua M song song với hai mặt phẳng (ABC) và (ABD). Giả sử đường thẳng này cắt mặt phẳng (ACD) tại B'.Chứng minh rằng AB', BM và CD đồng quy tại một điểm.b) Chứng minh MB'BA = dt∆MCDdt∆BCDc) Đường thẳng song song với hai mặt phẳng (ACB) và (ACD) kẻ từ M cắt (ABD) tại C' và đường thẳng song song với hai mặt phẳng (ADC) và (ADB) kẻ từ M cắt (ABC) tại D'. Chứng minh rằng MB'BA + MC'CA + MD'DA = 1

    Câu hỏi:

    Cho tứ diện ABCD và điểm M nằm trong tam giác BCD.a) Dựng đường thẳng qua M song song với hai mặt phẳng (ABC) và (ABD). Giả sử đường thẳng này cắt mặt phẳng (ACD) tại B’.Chứng minh rằng AB’, BM và CD đồng quy tại một điểm.b) Chứng minh MB‘BA = dt∆MCDdt∆BCDc) Đường thẳng song song với hai mặt phẳng (ACB) và (ACD) kẻ từ M cắt (ABD) tại C’ và đường thẳng song song với hai mặt phẳng (ADC) và (ADB) kẻ từ M cắt (ABC) tại D’. Chứng minh rằng MB‘BA + MC‘CA + MD‘DA = 1

    Trả lời:

    Giải sách bài tập Toán 11 | Giải sbt Toán 11a) MB’ qua M và song song với (ABC) và (ABD) ⇒ MB′ song song với giao tuyến AB của hai mặt phẳng này. Ta có: MB′ // AB nên MB’ và AB xác định một mặt phẳng. Giả sử MB cắt AB’ tại I.Ta có: I ∈ BM ⇒ I ∈ (BCD)I ∈ AB′ ⇒ I ∈ (ACD)Nên I ∈ (BCD) ∩ (ACD) = CDCó: I ∈ CDVậy ba đường thẳng AB’, BM và CD đồng quy tại I.b) MB′ // AB Giải sách bài tập Toán 11 | Giải sbt Toán 11Kẻ MM′ ⊥ CD và BH ⊥ CDTa có: MM′ // BH Giải sách bài tập Toán 11 | Giải sbt Toán 11Mặt khác:Giải sách bài tập Toán 11 | Giải sbt Toán 11 Giải sách bài tập Toán 11 | Giải sbt Toán 11Do đó: Giải sách bài tập Toán 11 | Giải sbt Toán 11Vậy Giải sách bài tập Toán 11 | Giải sbt Toán 11c) Tương tự ta có: Giải sách bài tập Toán 11 | Giải sbt Toán 11Giải sách bài tập Toán 11 | Giải sbt Toán 11Vậy:Giải sách bài tập Toán 11 | Giải sbt Toán 11

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  2. Từ các đỉnh của tam giác ABC ta kẻ các đoạn thẳng AA', BB', CC' song song cùng chiều, bằng nhau và không nằm trong mặt phẳng của tam giác. Gọi I, G và K lần lượt là trọng tâm của các tam giác ABC, ACC', A'B'C'.a) Chứng minh (IGK) // (BB′CC′).b) Chứng minh rằng (A′GK) // (AIB′).

    Câu hỏi:

    Từ các đỉnh của tam giác ABC ta kẻ các đoạn thẳng AA’, BB’, CC’ song song cùng chiều, bằng nhau và không nằm trong mặt phẳng của tam giác. Gọi I, G và K lần lượt là trọng tâm của các tam giác ABC, ACC’, A’B’C’.a) Chứng minh (IGK) // (BB′CC′).b) Chứng minh rằng (A′GK) // (AIB′).

    Trả lời:

    Giải sách bài tập Toán 11 | Giải sbt Toán 11Gọi M và M’ tương ứng là trung điểm của AC và A’C’, ta có:I ∈ BM, G ∈ C′M, K ∈ B′M′Theo tính chất trọng tâm của tam giác ta có:Giải sách bài tập Toán 11 | Giải sbt Toán 11Ta có :Giải sách bài tập Toán 11 | Giải sbt Toán 11Mặt khác IG và IK ⊂ (IGK) nên (IGK) // (BB′C′C)b) Gọi E và F tương ứng là trung điểm của BC và B’C’, O là trung điểm của A’C. A, I, E thẳng hàng nên (AIB’) chính là (AEB’). A’, G, C thẳng hàng nên (A’GK) chính là (A’CF).Ta có B′E // CF (do B’FCE là hình bình hành ) và AE // A′F nên (AIB′) // (A′GK).

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  3. Cho hình hộp ABCD.A'B'C'D'. Gọi M và N lần lượt là trung điểm của hai cạnh bên AA' và CC'. Một điểm P nằm trên cạnh bên DD'.a) Xác định giao điểm Q của đường thẳng BB' với mặt phẳng (MNP).b) Mặt phẳng (MNP) cắt hình hộp theo một thiết diện. Thiết diện đó có tính chất gì?c) Tìm giao tuyến của mặt phẳng (MNP) với mặt phẳng (ABCD) của hình hộp.

    Câu hỏi:

    Cho hình hộp ABCD.A’B’C’D’. Gọi M và N lần lượt là trung điểm của hai cạnh bên AA’ và CC’. Một điểm P nằm trên cạnh bên DD’.a) Xác định giao điểm Q của đường thẳng BB’ với mặt phẳng (MNP).b) Mặt phẳng (MNP) cắt hình hộp theo một thiết diện. Thiết diện đó có tính chất gì?c) Tìm giao tuyến của mặt phẳng (MNP) với mặt phẳng (ABCD) của hình hộp.

    Trả lời:

    Giải sách bài tập Toán 11 | Giải sbt Toán 11a) Ta có mặt phẳng (AA’, DD’) song song với mặt phẳng (BB’, CC’). Mặt phẳng (MNP) cắt hai mặt phẳng nói trên theo hai giao tuyến song song.Nếu gọi Q là điểm trên cạnh BB’ sao cho NQ // PM thì Q là giao điểm của đường thẳng BB’ với mặt phẳng (MNP)Nhận xét. Ta có thể tìm điểm Q bằng cách nối P với trung điểm I của đoạn MN và đường thẳng PI cắt BB’ tại Q.b) Vì mặt phẳng (AA’, BB’) song song với mặt phẳng (DD’, CC’) nên ta có MQ // PN. Do đó mặt phẳng (MNP) cắt hình hộp theo thiết diện MNPQ là một ình bình hành.Giả sử P không phải là trung điểm của đoạn DD’. Gọi H = PN ∩ DC , K = MP ∩ AD. Ta có D = HK là giao tuyến của mặt phẳng (MNP) với mặt phẳng (ABCD) của hình hộp.Chú ý rằng giao điểm E = AB ∩ MQ cũng nằm trên giao tuyến d nói trên. Khi P là trung điểm của DD’ mặt phẳng (MNP) song song với mặt phẳng (ABCD).

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  4. Cho hình hộp ABCD.A’B’C’D’. Hai điểm M và N lần lượt nằm trên hai cạnh AD và CC’ sao cho: AMMD = CNNC' a) Chứng minh rằng đường thẳng MN song song với mặt phẳng (ACB’)  b) Xác định thiết diện của hình hộp cắt bởi mặt phẳng đi qua MN và song song với mặt phẳng (ACB’)

    Câu hỏi:

    Cho hình hộp ABCD.A’B’C’D’. Hai điểm M và N lần lượt nằm trên hai cạnh AD và CC’ sao cho: AMMD = CNNC‘ a) Chứng minh rằng đường thẳng MN song song với mặt phẳng (ACB’)  b) Xác định thiết diện của hình hộp cắt bởi mặt phẳng đi qua MN và song song với mặt phẳng (ACB’)

    Trả lời:

    Giải sách bài tập Toán 11 | Giải sbt Toán 11a) Vẽ MP song song với AC và cắt CD tại P Ta có: Giải sách bài tập Toán 11 | Giải sbt Toán 11 Do đó PN // DC′ // AB′ Đường thẳng MN thuộc mặt phẳng (MNP) và mặt phẳng này có MP // AC và PN // AB′. Vậy mặt phẳng(MNP) song song với mặt phẳng (ACB’) và do đó MN // (ACB′) b) Vì mặt phẳng (MNP) song song với mặt phẳng (ACB’) nên hai mặt phẳng đó cắt các mặt bên của hình hộp theo các giao tuyến song song. Ta vẽ NQ // CB′, QR // C′A′ ((// CA), RS //AB′ (//PN) và tất nhiên SM // QN. Thiết diện của hình hộp cắt bởi mặt phẳng đi qua MN và song song với mặt phẳng (ACB’) là hình lục giác MPNQRS có các cạnh đối diện song song với nhau từng đôi một: MP // RQ, PN //SR, NQ // MS.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  5. Cho hình lăng trụ tứ giác ABCD.A'B'C'D'.a) Chứng minh rằng hai đường chéo AC' và A'C cắt nhau và hai đường chéo BD' và B'Dcắt nhau.b) Cho E và F lần lượt là trung điểm của hai đường chéo AC và BD.Chứng minh MN = EF.

    Câu hỏi:

    Cho hình lăng trụ tứ giác ABCD.A’B’C’D’.a) Chứng minh rằng hai đường chéo AC’ và A’C cắt nhau và hai đường chéo BD’ và B’Dcắt nhau.b) Cho E và F lần lượt là trung điểm của hai đường chéo AC và BD.Chứng minh MN = EF.

    Trả lời:

    Giải sách bài tập Toán 11 | Giải sbt Toán 11Hình bình hành ACC’A có hai đường chéo làAC’ và A’C cắt nhau tại trung điểm Mcủa mỗi đường. Tương tự, hai đường chéo BD’ và B’D cắt nhau tại trung điểm N của mỗi đường.b) Trung điểm E của AC là hình chiếu của trung điểm M của AC’ thep phương của cạnh lăng trụ. Tương tự, trung điểm F là hình chiếu trung điểm N của đường chéo BD’ trên BD. Ta có EM //CC′ và EM = CC′/2Mặt khác FN // DD′ và FN = DD′/2. Từ đó suy ra tứ giác MNFE là hình bình hành và ta có MN = EF.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

Tags : Tags Giải sách bài tập Câu hỏi ôn tập chương 2
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Khẳng định nào sau đây là đúng? A. sinα = sin( 180° – α ); B. cosα = cos( 180° – α ); C. tanα = tan( 180° – α ); D. cotα = cot( 180° – α );

Next post

Giải SGK Toán 6 Bài 4 (Cánh diều): Hình thang cân

Bài liên quan:

d) Xác định thiết diện của hình chóp bởi mặt phẳng qua A và vuông góc với SC. Tính diện tích thiết diện đó.

c) Tính khoảng cách từ A đến (SBC).

b) Gọi H là chân đường cao vẽ từ B của tam giác ABC. Chứng minh SAC⊥SBH

Cho hình chóp S.ABC có đáy là tam giác ABC vuông tại B, SA vuông góc với đáy,SA=a2 ,AB=a , BC=2a. a) Chứng minh tam giác SBC vuông.

c) Cho hàm số y=−x3+3×2−3  có đồ thị (C). Viết phương trình tiếp tuyến của (C) vuông góc với đường thẳng y=19x+2019

b) Viết phương trình tiếp tuyến của đường cong y=x3   tại điểm có tung độ bằng 8.

a) Cho hàm số fx=x2+3x−4x−1khi   x>1−2ax+1khi   x≤1 . Xác định a để hàm số liên tục tại điểm x=1

c) Tính giới hạn limx→+∞x2+x−x3−x23

Leave a Comment Hủy

Mục lục

  1. d) Xác định thiết diện của hình chóp bởi mặt phẳng qua A và vuông góc với SC. Tính diện tích thiết diện đó.
  2. c) Tính khoảng cách từ A đến (SBC).
  3. b) Gọi H là chân đường cao vẽ từ B của tam giác ABC. Chứng minh SAC⊥SBH
  4. Cho hình chóp S.ABC có đáy là tam giác ABC vuông tại B, SA vuông góc với đáy,SA=a2 ,AB=a , BC=2a. a) Chứng minh tam giác SBC vuông.
  5. c) Cho hàm số y=−x3+3×2−3  có đồ thị (C). Viết phương trình tiếp tuyến của (C) vuông góc với đường thẳng y=19x+2019
  6. b) Viết phương trình tiếp tuyến của đường cong y=x3   tại điểm có tung độ bằng 8.
  7. a) Cho hàm số fx=x2+3x−4x−1khi   x>1−2ax+1khi   x≤1 . Xác định a để hàm số liên tục tại điểm x=1
  8. c) Tính giới hạn limx→+∞x2+x−x3−x23
  9. b) Tính giới hạn A=limx→2×3−8x−2
  10. a) Tính giới hạn lim34.2n+1−5.3n .
  11. Giới hạn limx→01+x−1x  bằng 
  12. Đạo hàm của hàm số fx=x2+x+x+1x  tại x0=−1  bằng
  13. Cho fx=1+3x+1+2×3,  gx=sinx . Giá trị f’0g’0  bằng
  14. Cho hàm số fx=sin5x5xx≠0a+2x=0 . Giá trị của a để hàm số f(x) liên tục tại x=0 là
  15. Giá trị limx→12×2+x−3x−1  bằng 
  16. Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA⊥ABCD , gọi O là tâm hình vuông ABCD. Khẳng định nào sau đây sai?
  17. Giá trị limnn+1−n−1  bằng
  18. Cho hình chóp S.ABCD có SA⊥ABCD  và và đáy là hình vuông. Khẳng định nào sau đây đúng?
  19. Cho hàm số fx=45×5−6 . Số nghiệm của phương trình f’x=4  là
  20. Cho hình lập phương ABCD.A1B1C1D1  có cạnh a. Gọi M là trung điểm AD. Giá trị B1M→.BD1→  bằng
  21. Phương trình tiếp tuyến của đồ thị hàm số y=x4+2×2−1  tại tiếp điểm có hoành độ bằng -1 là
  22. Trong các mệnh đề sau đây, mệnh đề nào là đúng?
  23. Cho hàm số y=2x+12x−1  có đồ thị (C). Hệ số góc của tiếp tuyến với (C) tại điểm có hoành độ bằng 0 là
  24. Cho hàm số fx=1−x2 . Khi đó f’12  bằng 
  25. Cho hình chóp S.ABC có đáy ABC là tam giác cân tại B, cạnh bên SA vuông góc với đáy, M là trung điểm BC, J là hình chiếu của A lên BC. Kí hiệu dA,  SBC  là khoảng cách giữa điểm A và mặt phẳng (SBC). Khẳng định nào sau đây đúng?
  26. Hai đường thẳng a và b nằm trong mp α . Hai đường thẳng a’ và b’ nằm trong mp β . Mệnh đề nào sau đây đúng?
  27. Giá trị limn−23n+1  bằng
  28. Cho a, b, c là các đường thẳng. Mệnh đề nào sau đây đúng?
  29. Giới hạn nào dưới đây có kết quả bằng 3?
  30. Trong không gian cho đường thẳng ∆ và điểm O. Qua O có mấy đường thẳng vuông góc với ∆ cho trước?
  31. c) Gọi M, N là trung điểm BC, CD. Xác định thiết diện của hình chóp đi qua M, N và song song với SC. Tính diện tích thiết diện.
  32. b) Chứng minh rằng SAC⊥SBD
  33. Cho hình chóp S.ABCD đáy là hình vuông cạnh a, mặt bên (SAB), (SAD) vuông góc với đáy, các mặt bên (SBC), (SCD) cùng tạo với đáy góc 60° a) Chứng minh rằng SBA^=SDA^=60°
  34. c) Viết phương trình tiếp tuyến song song với trục hoành của đồ thị hàm số y=x4−2×2+10
  35. b) Viết phương trình tiếp tuyến của đồ thị hàm số y=x3−2x+3  tại điểm M1;  2
  36. a) Tìm giá trị thực của tham số m để hàm số fx=m2x2khi   x≤21−mxkhi   x>2  liên tục trên ℝ .
  37. c) Tính giới hạn limx→+∞1×2+x+2−x
  38. b) Tính giới hạn limx→2x+2−2x−2 .
  39. a) Tính giới hạn lim3n−12n−2.3n+1 .
  40. Giới hạn limx→+∞x+a1x+a2…x+ann−x  bằng
  41. Vi phân của hàm số y=tanxx  là
  42. Xét hai khẳng định (1) Hàm số y=xx+1  liên tục tại x=0. (2) Hàm số y=xx+1  có đạo hàm tại x=0. Trong hai khẳng định trên
  43. Cho hình lập phương ABCD.A’B’C’D’  cạnh a. Tích vô hướng AB→.A’D→  bằng
  44. Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SA⊥ABCD . Mặt phẳng qua A và vuông góc với SC cắt SB, SC, SD theo thứ tự tại H, M, K. Chọn khẳng định sai trong các khẳng định sau
  45. Giá trị limx→−1×2+2x+12×3+2  bằng 
  46. Cho hình chóp S.ABC có SA⊥ABC  và AB⊥BC , gọi I là trung điểm BC. Góc giữa hai mặt phẳng (SBC) và (ABC) là góc nào sau đây?
  47. Cho chuyển động thẳng xác định bởi phương trình S=t2−2t+3 , trong đó t được tính bằng giây và s được tính bằng mét. Vận tốc của chuyển động tại thời điểm t=2s   là
  48. Giá trị của limn2+6n−n  bằng
  49. Cho hàm số fx=x2−3x−3,x≠323, x=3  và các khẳng định (I) fx  liên tục tại x=3 . (II) fx  gián đoạn tại x=3 . (III) fx liên tục trên ℝ . Khẳng fx định đúng là 
  50. Hãy chọn phát biểu sai trong các phát biểu sau
  51. Hệ số góc của tiếp tuyến với đồ thị hàm số y=2×3−3×2+5  tại điểm có hoành độ -2 là
  52. Trong các mệnh đề sau đây, mệnh đề nào sai?

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán