Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Trắc nghiệm Toán 7

Cho hình vẽ Biết a⊥AB, b⊥AB, M1^=60o. Tính N2^

By admin 24/06/2023 0

Câu hỏi:

Cho hình vẽ Biết a⊥AB, b⊥AB, M1^=60o. Tính N2^

A. 120°

Đáp án chính xác

B. 100°

C. 60°

D. 80°

Trả lời:

====== **** mời các bạn xem câu tiếp bên dưới **** =====

  1. Chọn câu đúng. Hai góc đối đỉnh là:

    Câu hỏi:

    Chọn câu đúng. Hai góc đối đỉnh là:

    A. Hai góc có tổng số đo bằng 90°

    B. Hai góc có chung 1 cạnh

    C. Hai góc mà mỗi cạnh của góc này là tia đối của một cạnh của góc kia.

    Đáp án chính xác

    D. Hai góc có tổng số đo bằng 360°

    Trả lời:

    Đáp án CHai góc đối đỉnh là hai góc mà mỗi cạnh góc này là tia đối của một cạnh của góc kia.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  2. Hình vẽ sau có bao nhiêu cặp góc so le trong

    Câu hỏi:

    Hình vẽ sau có bao nhiêu cặp góc so le trong

    A. 3

    B. 5

    C. 2

    Đáp án chính xác

    D. 4

    Trả lời:

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  3. Em hãy chọn phát biểu đúng trong các phát biểu sau:Một đường thẳng cắt hai đường thẳng phân biệt thì tạo thành

    Câu hỏi:

    Em hãy chọn phát biểu đúng trong các phát biểu sau:Một đường thẳng cắt hai đường thẳng phân biệt thì tạo thành

    A. Hai góc so le trong bằng nhau

    B. Hai góc đồng vị bằng nhau

    C. Hai góc đối đỉnh bằng nhau

    Đáp án chính xác

    D. Hai góc so le ngoài bằng nhau

    Trả lời:

    Đáp án C+ Các đáp án A, B, D sai vì phải thêm điều kiện song song : “Một đường thẳng cắt hai đường thẳng song song thì tạo ra các cặp góc so le trong, so le ngoài, đồng vị bằng nhau.”+ Đáp án C đúng vì hai đường thẳng cắt nhau luôn tạo ra hai cặp góc đối đỉnh bằng nhau.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  4. Cho ba đường thẳng phân biệt a,b,c. Biết a⊥c, b⊥c, ta suy ra:

    Câu hỏi:

    Cho ba đường thẳng phân biệt a,b,c. Biết a⊥c, b⊥c, ta suy ra:

    A. a//b

    Đáp án chính xác

    B. a cắt b

    C. a ⊥ b

    D. Cả A,B,C đều sai

    Trả lời:

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  5. Cho hình vẽ sau Hai góc BAC^ và ACD^ là hai góc nằm ở vị trí nào?

    Câu hỏi:

    Cho hình vẽ sau Hai góc BAC^ và ACD^ là hai góc nằm ở vị trí nào?

    A. So le trong

    B. Đồng vị

    C. Trong cùng phía

    Đáp án chính xác

    D. Đối đỉnh

    Trả lời:

    Đáp án CHai góc BAC^ và ACD^ là hai góc trong cùng phía

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

Tags : Tags Trắc nghiệm Toán 7 (có đáp án): Bài tập ôn tập chương 5
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Cho tam giác ABC. Vẽ các tia Ax, Ay trong góc A sao cho BAx^=CAy^, vẽ các tia Bz, Bt trong góc B sao cho ABz^=CBt^. Gọi E là giao điểm của Ax và Bz, gọi F là giao điểm của Ay và Bt. Chứng minh ACE^=BCF^

Next post

Hãy tìm một số hình ảnh có dạng hình lục giác đều trong thực tế.

Bài liên quan:

c) Gọi G là trung điểm của DF; AD cắt CF tại H và cắt CG tại I. Chứng minh DI = 2IH.

b) Tia ED cắt AB tại F. Chứng minh AC = AF.

Cho tam giác ABC vuông tại A có AB < AC. Vẽ AD là tia phân giác của góc BAC (D ∈ BC). Trên AC lấy điểm E sao cho AE = AB. a) Chứng minh ABD^=AED^ .

d) Gọi M là trung điểm của HC, N là trung điểm của HB, I là giao điểm của BM và CN. Chứng minh ba điểm A, H, I thẳng hàng.

c) So sánh HB và HD.

b) Chứng minh tam giác HDE là tam giác cân.

Cho tam giác ABC cân tại A có các đường cao BD và CE cắt nhau tại H. a) Chứng minh ∆ADB = ∆AEC.

c) Từ E kẻ EH vuông góc với BC tại H. Cho biết HBE^=50°;MEB^=25° . Tính số đo các góc HEB và HEM.

Leave a Comment Hủy

Mục lục

  1. c) Gọi G là trung điểm của DF; AD cắt CF tại H và cắt CG tại I. Chứng minh DI = 2IH.
  2. b) Tia ED cắt AB tại F. Chứng minh AC = AF.
  3. Cho tam giác ABC vuông tại A có AB < AC. Vẽ AD là tia phân giác của góc BAC (D ∈ BC). Trên AC lấy điểm E sao cho AE = AB. a) Chứng minh ABD^=AED^ .
  4. d) Gọi M là trung điểm của HC, N là trung điểm của HB, I là giao điểm của BM và CN. Chứng minh ba điểm A, H, I thẳng hàng.
  5. c) So sánh HB và HD.
  6. b) Chứng minh tam giác HDE là tam giác cân.
  7. Cho tam giác ABC cân tại A có các đường cao BD và CE cắt nhau tại H. a) Chứng minh ∆ADB = ∆AEC.
  8. c) Từ E kẻ EH vuông góc với BC tại H. Cho biết HBE^=50°;MEB^=25° . Tính số đo các góc HEB và HEM.
  9. b) Gọi I là một điểm trên AC, K là một điểm trên EB sao cho AI = EK. CHứng minh ba điểm I, M, K thẳng hàng.
  10. Cho tam giác ABC có AB < AC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. a) Chứng minh AC = EB và AC song song với EB.
  11. c) Tam giác BAI là tam giác cân.
  12. b) Tam giác OAI là tam giác cân;
  13. Cho tam giác ABC có ba góc nhọn, AB < AC < BC. Các tia phân giác của góc A và góc C cắt nhau tại O. Gọi F là hình chiếu của O trên BC; H là hình chiếu của O trên AC. Lấy điểm I trên đoạn FC sao cho FI = AH. Chứng minh: a) OC vuông góc với FH;
  14. Cho tam giác ABC và điểm G nằm trong tam giác. Chứng minh: Nếu diện tích các tam giác GAB, GBC và GCA bằng nhau thì G là trọng tâm của tam giác đó.
  15. Trong các hình 62a, 62b, 62c, 62d, hình nào có điểm cách đều các đỉnh của tam giác đó? Vì sao?
  16. Cho tam giác ABC có BAC^=110° . Các đường trung trực của AB và AC cắt cạnh BC lần lượt tại E và F. Khi đó, số đo góc EAF bằng:
  17. Cho hai tam giác ABC và MNP có ABC^=MNP^,ACB^=MPN^. Cần thêm một điều kiện để tam giác ABC và tam giác MNP bằng nhau theo trường hợp góc – cạnh – góc là:
  18. c) Trực tâm của các tam giác AEF, MEF, DBC và ABC nằm trên cùng một đường thẳng.
  19. b) Trực tâm của các tam giác ABD và ACD nằm trên đường thẳng BC;
  20. Cho tam giác ABC cân tại A, đường trung tuyến AM. Từ M kẻ ME vuông góc với AB (E ∈ AB), kẻ MF vuông góc với AC (F ∈ AC). Gọi I là giao điểm của AM và EF. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh: a) AM vuông góc với EF;
  21. c) Tìm điều kiện của tam giác ABC để H cách đều các đỉnh của tam giác BAE.
  22. b) Chứng minh trực tâm của tam giác DAE nằm ngoài tam giác đó.
  23. Cho tam giác ABC vuông tại A có AB < AC, đường phân giác BD. Vẽ DE vuông góc với BC tại E. a) Chứng minh trực tâm H của tam giác BAE nằm trên đường thẳng BD.
  24. b) Tìm điều kiện của tam giác ABC để I là trọng tâm của tam giác BCD.
  25. Cho tam giác ABC vuông tại A. Trên tia đối của tia AB lấy điểm D sao cho AB = AD. Vẽ BE vuông góc với CD tại E. Gọi I là giao điểm của AC và BE; K là hình chiếu của I trên BC. a) Chứng minh ba điểm D, I, K thẳng hàng.
  26. Cho tam giác ABC có trực tâm H đồng thời cũng là điểm cách đều ba đỉnh của tam giác. Tính số đo các góc của tam giác ABC.
  27. Cho tam giác ABC nhọn có các đường cao AD, BE, CF cắt nhau tại H (Hình 61). Tìm trực tâm của các tam giác HAB, HBC, HCA.
  28. Cho tam giác ABC có AB &gt; AC &gt; BC và K là trực tâm. Trong các phát biểu sau, phát biểu nào đúng?
  29. c) AH vuông góc với BC.
  30. b) CH vuông góc với AB.
  31. Cho tam giác ABC có AB > AC > BC và H là trực tâm. Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai? a) H là giao điểm ba đường trung trực của tam giác ABC.
  32. b) Tính số đo các góc của tam giác MKH
  33. Cho tam giác ABC vuông cân ở A có đường phân giác AM. Gọi E là điểm nằm giữa B và C. Vẽ BH và CK vuông góc với AE (H, K thuộc AE). a) Chứng minh ba đường trung trực tương ứng của các đoạn thẳng AB, AC, KH cùng đi qua điểm M.
  34. c) Tính số đo các góc của tam giác IBC.
  35. b) Đường tròn tâm I bán kính IA đi qua những điểm nào?
  36. Cho tam giác ABC cân ở A có BAC^=120° . Đường trung trực của các cạnh AB và AC cắt nhau ở I và cắt cạnh BC lần lượt tại D, E (Hình 56). a) Chứng minh điểm I nằm trên đường trung trực của đoạn thẳng DE.
  37. b) Nếu xOy^=30°  thì EOF^=60° .
  38. Cho góc nhọn xOy và điểm M nằm trong góc xOy. Gọi E, F là hai điểm nằm ngoài góc xOy sao cho Ox là đường trung trực của đoạn thẳng ME, Oy là đường trung trực của đoạn thẳng MF (Hình 55). Chứng minh: a) O là giao điểm ba đường trung trực của tam giác EMF.
  39. Chứng minh rằng các đường trung trực của tam giác vuông đi qua trung điểm của cạnh huyền.
  40. Cho tam giác đều ABC có I là điểm cách đều ba cạnh AB, BC, CA. Chứng minh rằng I cách đều ba đỉnh A, B, C và cũng là trọng tâm của tam giác ABC.
  41. Chọn phát biểu sai:
  42. Tấm bìa bên dưới có thể tạo lập thành một hình lăng trụ đứng có đáy là tam giác đều. Chiều cao của hình lăng trụ đứng là:
  43. Chọn khẳng định đúng trong các khẳng định sau:
  44. Cho hình hộp chữ nhật ABCD. EFGH. Cho AB = 4 cm, BC = 2 cm, AE = 4 cm. Khẳng định đúng là:
  45. Hãy chọn khẳng định sai. Hình lập phương ABCD.A’B’C’D’ có:
  46. Trong hình dưới đây có bao nhiêu hình lập phương, bao nhiêu hình hộp chữ nhật?
  47. Kết quả của phép tính −78−54 là:
  48. Cho biểu thức 21+154:38−16.57. Chọn khẳng định đúng?
  49. Cho các điểm A, B, C, D biểu diễn các số trên trục số như sau: Điểm biểu diễn số 6−4 là:
  50. Cho a = 2−9 và b = -13. Khẳng định nào sau đây là đúng?
  51. Số đối của số hữu tỉ 94 là
  52. Trong các câu sau, câu nào đúng?

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán