Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Trắc nghiệm Toán 7

Cho tam giác ABC có AH vuông góc với BC tại H. Khi đó ta có

By admin 23/06/2023 0

Câu hỏi:

Cho tam giác ABC có AH vuông góc với BC tại H. Khi đó ta có

A. 2AH + BC > AB + AC

Đáp án chính xác

B. 2AH + BC < AB + AC

C. 2AH + BC = AB + AC

D. AH + BC = AB + AC

Trả lời:

Trong tam giác AHB có AH + BH > AB (bất đẳng thức trong tam giác)Trong tam giác AHC có AH + HC > AC (bất đẳng thức trong tam giác)Khi đó cộng vế theo vế ta được: AH + BH + AH + HC > AB + AC Hay 2AH + (BH + HC) > AB + AC Hay 2AH + BC > AB + ACVậy 2AH + BC > AB + AC.Chọn đáp án A

====== **** mời các bạn xem câu tiếp bên dưới **** =====

  1. Cho tam giác ABC, chọn đáp án sai trong các đáp án sau:

    Câu hỏi:

    Cho tam giác ABC, chọn đáp án sai trong các đáp án sau:

    A. AB+BC>AC

    B. BC−AB<AC

    C. BC−AB<AC<BC+AB

    D. AB−AC>BC

    Đáp án chính xác

    Trả lời:

    Vì trong một tam giác tổng độ dài hai cạnh bất kì lớn hơn độ dài cạnh còn lại và hiệu độ dài hai cạnh bất kì nhỏ hơn độ dài cạnh còn lại nên các đáp án A, B, C đúng và D sai.Chọn đáp án D.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  2. Dựa vào bất đẳng thức tam giác, kiểm tra xem bộ ba nào trong các bộ ba đoạn thẳng có độ dài sau đây không thể là ba cạnh của một tam giác:

    Câu hỏi:

    Dựa vào bất đẳng thức tam giác, kiểm tra xem bộ ba nào trong các bộ ba đoạn thẳng có độ dài sau đây không thể là ba cạnh của một tam giác:

    A. 3cm,5cm,7cm

    B. 4cm,5cm,6cm

    C. 2cm,5cm,7cm

    Đáp án chính xác

    D. 3cm,6cm,5cm

    Trả lời:

    • Xét bộ ba: 3cm,5cm,7cm. Ta có: 3+5=8>73+7=10>55+7=12>3 (thỏa mãn bất đẳng thức tam giác) nên bộ ba 3cm,5cm,7cm lập thành một tam giác nên loại A.• Xét bộ ba 4cm,5cm,6cm. Ta có: 4+5=9>64+6=10>55+6=11>4 (thỏa mãn bất đẳng thức tam giác) nên bộ ba 4cm,5cm,6cm lập thành một tam giác nên loại B.• Xét bộ ba 3cm,6cm,5cm. Ta có: 3+6=9>53+5=8>66+5=11>3 (thỏa mãn bất đẳng thức tam giác) nên bộ ba 3cm,6cm,5cm lập thành một tam giác nên loại D.• Xét bộ ba 2cm,5cm,7cm. Ta có: 2+5=7 (không thỏa mãn bất đẳng thức tam giác) nên bộ ba 2cm,5cm,7cm không lập thành một tam giác nên chọn C.Chọn đáp án C.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  3. Cho tam giác ABC có cạnh AB = 1cm và BC = 4cm. Tính độ dài cạnh AC biết độ dài cạnh AC là một số nguyên:

    Câu hỏi:

    Cho tam giác ABC có cạnh AB = 1cm và BC = 4cm. Tính độ dài cạnh AC biết độ dài cạnh AC là một số nguyên:

    A. 1cm

    B. 2cm

    C. 3cm

    D. 4cm

    Đáp án chính xác

    Trả lời:

    Gọi độ dài cạnh AC là x (x>0). Theo bất đẳng thức tam giác ta có: 4−1<x<4+1⇔3<x<5 Vì x là số nguyên nên x = 4. Vậy độ dài cạnh AC = 4cm Chọn đáp án D.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  4. Cho tam giác ABC biết AB = 1cm, BC = 9cm và cạnh AC là một số nguyên. Chu vi tam giác ABC là:

    Câu hỏi:

    Cho tam giác ABC biết AB = 1cm, BC = 9cm và cạnh AC là một số nguyên. Chu vi tam giác ABC là:

    A. 17cm

    B. 18cm

    C. 19cm

    Đáp án chính xác

    D. 16cm

    Trả lời:

    Gọi độ dài cạnh AC là x (x >0). Theo bất đẳng thức tam giác ta có: 9−1<x<9+1⇔8<x<10 Vì x là số nguyên nên x = 9. Vậy độ dài cạnh AC = 9cm Chu vi tam giác là: AB+BC+AC=1+9+9=19cmChọn đáp án C.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  5. Cho tam giác ABC có BC = 1cm, AC = 8cm và độ dài cạnh AB là một số nguyên (cm). Tam giác ABC là tam giác gì?

    Câu hỏi:

    Cho tam giác ABC có BC = 1cm, AC = 8cm và độ dài cạnh AB là một số nguyên (cm). Tam giác ABC là tam giác gì?

    A. Tam giác vuông tại A

    B. Tam giác cân tại A

    Đáp án chính xác

    C. Tam giác vuông cân tại A

    D. Tam giác cân tại B

    Trả lời:

    Gọi độ dài cạnh AB là x (x>0). Theo bất đẳng thức tam giác ta có: 8−1<x<8+1⇔7<x<9 Vì x là số nguyên nên x = 8. Vậy độ dài cạnh AB = 8cm Tam giác ABC có AB = AC = 8cm nên tam giác ABC cân tại A.Chọn đáp án B.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

Tags : Tags Bài tập: Quan hệ giữa ba cạnh của một tam giác. Bất đẳng thức tam giác có đáp án
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Rút gọn các phân thức: 20×2-452x+32

Next post

 Dùng ba chữ số 4; 0; 5 ghép thành các số tự nhiên có ba chữ số khác nhau và chia hết cho 5. Số các chữ số có thể tạo thành là:

Bài liên quan:

c) Gọi G là trung điểm của DF; AD cắt CF tại H và cắt CG tại I. Chứng minh DI = 2IH.

b) Tia ED cắt AB tại F. Chứng minh AC = AF.

Cho tam giác ABC vuông tại A có AB < AC. Vẽ AD là tia phân giác của góc BAC (D ∈ BC). Trên AC lấy điểm E sao cho AE = AB. a) Chứng minh ABD^=AED^ .

d) Gọi M là trung điểm của HC, N là trung điểm của HB, I là giao điểm của BM và CN. Chứng minh ba điểm A, H, I thẳng hàng.

c) So sánh HB và HD.

b) Chứng minh tam giác HDE là tam giác cân.

Cho tam giác ABC cân tại A có các đường cao BD và CE cắt nhau tại H. a) Chứng minh ∆ADB = ∆AEC.

c) Từ E kẻ EH vuông góc với BC tại H. Cho biết HBE^=50°;MEB^=25° . Tính số đo các góc HEB và HEM.

Leave a Comment Hủy

Mục lục

  1. c) Gọi G là trung điểm của DF; AD cắt CF tại H và cắt CG tại I. Chứng minh DI = 2IH.
  2. b) Tia ED cắt AB tại F. Chứng minh AC = AF.
  3. Cho tam giác ABC vuông tại A có AB < AC. Vẽ AD là tia phân giác của góc BAC (D ∈ BC). Trên AC lấy điểm E sao cho AE = AB. a) Chứng minh ABD^=AED^ .
  4. d) Gọi M là trung điểm của HC, N là trung điểm của HB, I là giao điểm của BM và CN. Chứng minh ba điểm A, H, I thẳng hàng.
  5. c) So sánh HB và HD.
  6. b) Chứng minh tam giác HDE là tam giác cân.
  7. Cho tam giác ABC cân tại A có các đường cao BD và CE cắt nhau tại H. a) Chứng minh ∆ADB = ∆AEC.
  8. c) Từ E kẻ EH vuông góc với BC tại H. Cho biết HBE^=50°;MEB^=25° . Tính số đo các góc HEB và HEM.
  9. b) Gọi I là một điểm trên AC, K là một điểm trên EB sao cho AI = EK. CHứng minh ba điểm I, M, K thẳng hàng.
  10. Cho tam giác ABC có AB < AC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. a) Chứng minh AC = EB và AC song song với EB.
  11. c) Tam giác BAI là tam giác cân.
  12. b) Tam giác OAI là tam giác cân;
  13. Cho tam giác ABC có ba góc nhọn, AB < AC < BC. Các tia phân giác của góc A và góc C cắt nhau tại O. Gọi F là hình chiếu của O trên BC; H là hình chiếu của O trên AC. Lấy điểm I trên đoạn FC sao cho FI = AH. Chứng minh: a) OC vuông góc với FH;
  14. Cho tam giác ABC và điểm G nằm trong tam giác. Chứng minh: Nếu diện tích các tam giác GAB, GBC và GCA bằng nhau thì G là trọng tâm của tam giác đó.
  15. Trong các hình 62a, 62b, 62c, 62d, hình nào có điểm cách đều các đỉnh của tam giác đó? Vì sao?
  16. Cho tam giác ABC có BAC^=110° . Các đường trung trực của AB và AC cắt cạnh BC lần lượt tại E và F. Khi đó, số đo góc EAF bằng:
  17. Cho hai tam giác ABC và MNP có ABC^=MNP^,ACB^=MPN^. Cần thêm một điều kiện để tam giác ABC và tam giác MNP bằng nhau theo trường hợp góc – cạnh – góc là:
  18. c) Trực tâm của các tam giác AEF, MEF, DBC và ABC nằm trên cùng một đường thẳng.
  19. b) Trực tâm của các tam giác ABD và ACD nằm trên đường thẳng BC;
  20. Cho tam giác ABC cân tại A, đường trung tuyến AM. Từ M kẻ ME vuông góc với AB (E ∈ AB), kẻ MF vuông góc với AC (F ∈ AC). Gọi I là giao điểm của AM và EF. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh: a) AM vuông góc với EF;
  21. c) Tìm điều kiện của tam giác ABC để H cách đều các đỉnh của tam giác BAE.
  22. b) Chứng minh trực tâm của tam giác DAE nằm ngoài tam giác đó.
  23. Cho tam giác ABC vuông tại A có AB < AC, đường phân giác BD. Vẽ DE vuông góc với BC tại E. a) Chứng minh trực tâm H của tam giác BAE nằm trên đường thẳng BD.
  24. b) Tìm điều kiện của tam giác ABC để I là trọng tâm của tam giác BCD.
  25. Cho tam giác ABC vuông tại A. Trên tia đối của tia AB lấy điểm D sao cho AB = AD. Vẽ BE vuông góc với CD tại E. Gọi I là giao điểm của AC và BE; K là hình chiếu của I trên BC. a) Chứng minh ba điểm D, I, K thẳng hàng.
  26. Cho tam giác ABC có trực tâm H đồng thời cũng là điểm cách đều ba đỉnh của tam giác. Tính số đo các góc của tam giác ABC.
  27. Cho tam giác ABC nhọn có các đường cao AD, BE, CF cắt nhau tại H (Hình 61). Tìm trực tâm của các tam giác HAB, HBC, HCA.
  28. Cho tam giác ABC có AB &gt; AC &gt; BC và K là trực tâm. Trong các phát biểu sau, phát biểu nào đúng?
  29. c) AH vuông góc với BC.
  30. b) CH vuông góc với AB.
  31. Cho tam giác ABC có AB > AC > BC và H là trực tâm. Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai? a) H là giao điểm ba đường trung trực của tam giác ABC.
  32. b) Tính số đo các góc của tam giác MKH
  33. Cho tam giác ABC vuông cân ở A có đường phân giác AM. Gọi E là điểm nằm giữa B và C. Vẽ BH và CK vuông góc với AE (H, K thuộc AE). a) Chứng minh ba đường trung trực tương ứng của các đoạn thẳng AB, AC, KH cùng đi qua điểm M.
  34. c) Tính số đo các góc của tam giác IBC.
  35. b) Đường tròn tâm I bán kính IA đi qua những điểm nào?
  36. Cho tam giác ABC cân ở A có BAC^=120° . Đường trung trực của các cạnh AB và AC cắt nhau ở I và cắt cạnh BC lần lượt tại D, E (Hình 56). a) Chứng minh điểm I nằm trên đường trung trực của đoạn thẳng DE.
  37. b) Nếu xOy^=30°  thì EOF^=60° .
  38. Cho góc nhọn xOy và điểm M nằm trong góc xOy. Gọi E, F là hai điểm nằm ngoài góc xOy sao cho Ox là đường trung trực của đoạn thẳng ME, Oy là đường trung trực của đoạn thẳng MF (Hình 55). Chứng minh: a) O là giao điểm ba đường trung trực của tam giác EMF.
  39. Chứng minh rằng các đường trung trực của tam giác vuông đi qua trung điểm của cạnh huyền.
  40. Cho tam giác đều ABC có I là điểm cách đều ba cạnh AB, BC, CA. Chứng minh rằng I cách đều ba đỉnh A, B, C và cũng là trọng tâm của tam giác ABC.
  41. Chọn phát biểu sai:
  42. Tấm bìa bên dưới có thể tạo lập thành một hình lăng trụ đứng có đáy là tam giác đều. Chiều cao của hình lăng trụ đứng là:
  43. Chọn khẳng định đúng trong các khẳng định sau:
  44. Cho hình hộp chữ nhật ABCD. EFGH. Cho AB = 4 cm, BC = 2 cm, AE = 4 cm. Khẳng định đúng là:
  45. Hãy chọn khẳng định sai. Hình lập phương ABCD.A’B’C’D’ có:
  46. Trong hình dưới đây có bao nhiêu hình lập phương, bao nhiêu hình hộp chữ nhật?
  47. Kết quả của phép tính −78−54 là:
  48. Cho biểu thức 21+154:38−16.57. Chọn khẳng định đúng?
  49. Cho các điểm A, B, C, D biểu diễn các số trên trục số như sau: Điểm biểu diễn số 6−4 là:
  50. Cho a = 2−9 và b = -13. Khẳng định nào sau đây là đúng?
  51. Số đối của số hữu tỉ 94 là
  52. Trong các câu sau, câu nào đúng?

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán