Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Trắc nghiệm Toán 7

Cho tam giác cân biết hai cạnh bằng 2cm và 5cm. Chu vi của tam giác là:

By admin 21/06/2023 0

Câu hỏi:

Cho tam giác cân biết hai cạnh bằng 2cm và 5cm. Chu vi của tam giác là:

A. 18cm 

B. 6cm

C. 9cm

D. 12cm

Đáp án chính xác

Trả lời:

Vì tam giác cân nên cạnh còn lại có thể là 2cm hoặc 5cm. Do thỏa mãn bất đẳng thức tam giác nên cạnh còn lại là 5cm Khi đó chu vi tam giác là 2+5+5=12cm. Chọn D

====== **** mời các bạn xem câu tiếp bên dưới **** =====

  1. Trong mỗi câu dưới đây, hãy chọn phương án trả lời đúng:Giao điểm của ba đường trung tuyến được gọi là:

    Câu hỏi:

    Trong mỗi câu dưới đây, hãy chọn phương án trả lời đúng:Giao điểm của ba đường trung tuyến được gọi là:

    A. Trọng tâm 

    Đáp án chính xác

    B. Trực tâm 

    C. Tâm đường tròn ngoại tiếp 

    D. Tâm đường tròn nội tiếp

    Trả lời:

    Chọn A

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  2. Tam giác ABC có AB=1cm,AC=9cm. Biết độ dài cạnh BC là một số nguyên, khi đó BC là:

    Câu hỏi:

    Tam giác ABC có AB=1cm,AC=9cm. Biết độ dài cạnh BC là một số nguyên, khi đó BC là:

    A. 7cm

    B. 9cm

    Đáp án chính xác

    C. 10cm

    D. 8cm

    Trả lời:

    Ta có AC-AB < BC < AC+AB=>8 < BC < 10. Chọn B

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  3. Tam giác cân có một góc bằng 60° thì tam giác đó là:

    Câu hỏi:

    Tam giác cân có một góc bằng 60° thì tam giác đó là:

    A. Tam giác vuông cân

    B. Tam giác vuông

    C. Tam giác tù

    D. Tam giác đều

    Đáp án chính xác

    Trả lời:

    Chọn D

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  4. Bộ ba nào trong số các bộ ba sau là độ dài ba cạnh của tam giác

    Câu hỏi:

    Bộ ba nào trong số các bộ ba sau là độ dài ba cạnh của tam giác

    A. 6cm, 8cm, 10cm 

    Đáp án chính xác

    B. 5cm, 7cm, 13cm 

    C. 7cm, 9cm, 17cm 

    D. 8cm, 9cm, 20cm

    Trả lời:

    Vì 6+8=14>10 không thỏa mãn bất đẳng thức tam giác. Chọn A

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  5. Cho tam giác ABC cân tại A có AB = AC = 10cm, đường trung tuyến AM (M∈BC) có độ dài là 6cm. Khi đó BC có độ dài là:

    Câu hỏi:

    Cho tam giác ABC cân tại A có AB = AC = 10cm, đường trung tuyến AM (M∈BC) có độ dài là 6cm. Khi đó BC có độ dài là:

    A. 16cm

    B. 12cm 

    C. 14cm

    D. 8cm

    Đáp án chính xác

    Trả lời:

    Tam giác ABC cân tại A, AM là đường trung tuyến đồng thời là đường cao.Áp dụng định lí Pytago trong tam giác vuông ABM có:BM^2=AB^2-AM^2=10^2-6^2=64=>AM=8cm. Chọn D

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

Tags : Tags Đề kiểm tra 1 tiết Toán 7 Chương 3 Hình học có đáp án (Trắc nghiệm 2)
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Viết thành bất phương trình và chỉ ra hai nghiệm của nó từ các mệnh đề sau đây: Tổng của 2 lần số nào đó và 3 lớn hơn 12.

Next post

Một mảnh vườn hình vuông cạnh 20 m. Người ta làm một lối đi xung quanh vườn rộng 2 m thuộc đất của vườn. Phần đất còn lại dùng để trồng trọt. Tính diện tích trồng trọt của mảnh vườn.

Bài liên quan:

c) Gọi G là trung điểm của DF; AD cắt CF tại H và cắt CG tại I. Chứng minh DI = 2IH.

b) Tia ED cắt AB tại F. Chứng minh AC = AF.

Cho tam giác ABC vuông tại A có AB < AC. Vẽ AD là tia phân giác của góc BAC (D ∈ BC). Trên AC lấy điểm E sao cho AE = AB. a) Chứng minh ABD^=AED^ .

d) Gọi M là trung điểm của HC, N là trung điểm của HB, I là giao điểm của BM và CN. Chứng minh ba điểm A, H, I thẳng hàng.

c) So sánh HB và HD.

b) Chứng minh tam giác HDE là tam giác cân.

Cho tam giác ABC cân tại A có các đường cao BD và CE cắt nhau tại H. a) Chứng minh ∆ADB = ∆AEC.

c) Từ E kẻ EH vuông góc với BC tại H. Cho biết HBE^=50°;MEB^=25° . Tính số đo các góc HEB và HEM.

Leave a Comment Hủy

Mục lục

  1. c) Gọi G là trung điểm của DF; AD cắt CF tại H và cắt CG tại I. Chứng minh DI = 2IH.
  2. b) Tia ED cắt AB tại F. Chứng minh AC = AF.
  3. Cho tam giác ABC vuông tại A có AB < AC. Vẽ AD là tia phân giác của góc BAC (D ∈ BC). Trên AC lấy điểm E sao cho AE = AB. a) Chứng minh ABD^=AED^ .
  4. d) Gọi M là trung điểm của HC, N là trung điểm của HB, I là giao điểm của BM và CN. Chứng minh ba điểm A, H, I thẳng hàng.
  5. c) So sánh HB và HD.
  6. b) Chứng minh tam giác HDE là tam giác cân.
  7. Cho tam giác ABC cân tại A có các đường cao BD và CE cắt nhau tại H. a) Chứng minh ∆ADB = ∆AEC.
  8. c) Từ E kẻ EH vuông góc với BC tại H. Cho biết HBE^=50°;MEB^=25° . Tính số đo các góc HEB và HEM.
  9. b) Gọi I là một điểm trên AC, K là một điểm trên EB sao cho AI = EK. CHứng minh ba điểm I, M, K thẳng hàng.
  10. Cho tam giác ABC có AB < AC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. a) Chứng minh AC = EB và AC song song với EB.
  11. c) Tam giác BAI là tam giác cân.
  12. b) Tam giác OAI là tam giác cân;
  13. Cho tam giác ABC có ba góc nhọn, AB < AC < BC. Các tia phân giác của góc A và góc C cắt nhau tại O. Gọi F là hình chiếu của O trên BC; H là hình chiếu của O trên AC. Lấy điểm I trên đoạn FC sao cho FI = AH. Chứng minh: a) OC vuông góc với FH;
  14. Cho tam giác ABC và điểm G nằm trong tam giác. Chứng minh: Nếu diện tích các tam giác GAB, GBC và GCA bằng nhau thì G là trọng tâm của tam giác đó.
  15. Trong các hình 62a, 62b, 62c, 62d, hình nào có điểm cách đều các đỉnh của tam giác đó? Vì sao?
  16. Cho tam giác ABC có BAC^=110° . Các đường trung trực của AB và AC cắt cạnh BC lần lượt tại E và F. Khi đó, số đo góc EAF bằng:
  17. Cho hai tam giác ABC và MNP có ABC^=MNP^,ACB^=MPN^. Cần thêm một điều kiện để tam giác ABC và tam giác MNP bằng nhau theo trường hợp góc – cạnh – góc là:
  18. c) Trực tâm của các tam giác AEF, MEF, DBC và ABC nằm trên cùng một đường thẳng.
  19. b) Trực tâm của các tam giác ABD và ACD nằm trên đường thẳng BC;
  20. Cho tam giác ABC cân tại A, đường trung tuyến AM. Từ M kẻ ME vuông góc với AB (E ∈ AB), kẻ MF vuông góc với AC (F ∈ AC). Gọi I là giao điểm của AM và EF. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh: a) AM vuông góc với EF;
  21. c) Tìm điều kiện của tam giác ABC để H cách đều các đỉnh của tam giác BAE.
  22. b) Chứng minh trực tâm của tam giác DAE nằm ngoài tam giác đó.
  23. Cho tam giác ABC vuông tại A có AB < AC, đường phân giác BD. Vẽ DE vuông góc với BC tại E. a) Chứng minh trực tâm H của tam giác BAE nằm trên đường thẳng BD.
  24. b) Tìm điều kiện của tam giác ABC để I là trọng tâm của tam giác BCD.
  25. Cho tam giác ABC vuông tại A. Trên tia đối của tia AB lấy điểm D sao cho AB = AD. Vẽ BE vuông góc với CD tại E. Gọi I là giao điểm của AC và BE; K là hình chiếu của I trên BC. a) Chứng minh ba điểm D, I, K thẳng hàng.
  26. Cho tam giác ABC có trực tâm H đồng thời cũng là điểm cách đều ba đỉnh của tam giác. Tính số đo các góc của tam giác ABC.
  27. Cho tam giác ABC nhọn có các đường cao AD, BE, CF cắt nhau tại H (Hình 61). Tìm trực tâm của các tam giác HAB, HBC, HCA.
  28. Cho tam giác ABC có AB &gt; AC &gt; BC và K là trực tâm. Trong các phát biểu sau, phát biểu nào đúng?
  29. c) AH vuông góc với BC.
  30. b) CH vuông góc với AB.
  31. Cho tam giác ABC có AB > AC > BC và H là trực tâm. Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai? a) H là giao điểm ba đường trung trực của tam giác ABC.
  32. b) Tính số đo các góc của tam giác MKH
  33. Cho tam giác ABC vuông cân ở A có đường phân giác AM. Gọi E là điểm nằm giữa B và C. Vẽ BH và CK vuông góc với AE (H, K thuộc AE). a) Chứng minh ba đường trung trực tương ứng của các đoạn thẳng AB, AC, KH cùng đi qua điểm M.
  34. c) Tính số đo các góc của tam giác IBC.
  35. b) Đường tròn tâm I bán kính IA đi qua những điểm nào?
  36. Cho tam giác ABC cân ở A có BAC^=120° . Đường trung trực của các cạnh AB và AC cắt nhau ở I và cắt cạnh BC lần lượt tại D, E (Hình 56). a) Chứng minh điểm I nằm trên đường trung trực của đoạn thẳng DE.
  37. b) Nếu xOy^=30°  thì EOF^=60° .
  38. Cho góc nhọn xOy và điểm M nằm trong góc xOy. Gọi E, F là hai điểm nằm ngoài góc xOy sao cho Ox là đường trung trực của đoạn thẳng ME, Oy là đường trung trực của đoạn thẳng MF (Hình 55). Chứng minh: a) O là giao điểm ba đường trung trực của tam giác EMF.
  39. Chứng minh rằng các đường trung trực của tam giác vuông đi qua trung điểm của cạnh huyền.
  40. Cho tam giác đều ABC có I là điểm cách đều ba cạnh AB, BC, CA. Chứng minh rằng I cách đều ba đỉnh A, B, C và cũng là trọng tâm của tam giác ABC.
  41. Chọn phát biểu sai:
  42. Tấm bìa bên dưới có thể tạo lập thành một hình lăng trụ đứng có đáy là tam giác đều. Chiều cao của hình lăng trụ đứng là:
  43. Chọn khẳng định đúng trong các khẳng định sau:
  44. Cho hình hộp chữ nhật ABCD. EFGH. Cho AB = 4 cm, BC = 2 cm, AE = 4 cm. Khẳng định đúng là:
  45. Hãy chọn khẳng định sai. Hình lập phương ABCD.A’B’C’D’ có:
  46. Trong hình dưới đây có bao nhiêu hình lập phương, bao nhiêu hình hộp chữ nhật?
  47. Kết quả của phép tính −78−54 là:
  48. Cho biểu thức 21+154:38−16.57. Chọn khẳng định đúng?
  49. Cho các điểm A, B, C, D biểu diễn các số trên trục số như sau: Điểm biểu diễn số 6−4 là:
  50. Cho a = 2−9 và b = -13. Khẳng định nào sau đây là đúng?
  51. Số đối của số hữu tỉ 94 là
  52. Trong các câu sau, câu nào đúng?

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán