Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Trắc nghiệm Toán 7

Vẽ tia phân giác Oz của góc xOy có số đo bằng 68o, sử dụng thước đo góc theo hướng dẫn. Nếu Oz là tia phân giác của góc xOy thì xOz^=12.68°=34°. Ta có cách vẽ sau:      

By admin 02/07/2023 0

Câu hỏi:

Vẽ tia phân giác Oz của góc xOy có số đo bằng 68o, sử dụng thước đo góc theo hướng dẫn. Nếu Oz là tia phân giác của góc xOy thì xOz^=12.68°=34°. Ta có cách vẽ sau:
Vẽ tia phân giác Oz của góc xOy có số đo bằng 68o, sử dụng thước đo góc theo hướng dẫn. Nếu Oz là tia (ảnh 1)
 
 
 

Trả lời:

Ta thực hiện vẽ theo các bước sau:
Bước 1. Vẽ góc xOy có số đo bằng 68o.
Vẽ tia phân giác Oz của góc xOy có số đo bằng 68o, sử dụng thước đo góc theo hướng dẫn. Nếu Oz là tia (ảnh 2)
 
 
 
Bước 2. Sử dụng thước đo độ, đánh dấu điểm ứng với vạch 34o của thước đo góc.
Vẽ tia phân giác Oz của góc xOy có số đo bằng 68o, sử dụng thước đo góc theo hướng dẫn. Nếu Oz là tia (ảnh 3)
 
 
 
Bước 3. Kẻ tia Oz đi qua điểm đã đánh dấu. Tia Oz là tia phân giác của góc xOy.
Vẽ tia phân giác Oz của góc xOy có số đo bằng 68o, sử dụng thước đo góc theo hướng dẫn. Nếu Oz là tia (ảnh 4)
 
 
 

====== **** mời các bạn xem câu tiếp bên dưới **** =====

  1. Khi đặt các dây lạt để cắt bánh chưng, các dây lạt tạo ra trên mặt bánh chưng những cặp góc đặc biệt. Những cặp góc đó có mối quan hệ với nhau như thế nào, chúng ta cùng tìm hiểu trong bài học này!

    Câu hỏi:

    Khi đặt các dây lạt để cắt bánh chưng, các dây lạt tạo ra trên mặt bánh chưng những cặp góc đặc biệt. Những cặp góc đó có mối quan hệ với nhau như thế nào, chúng ta cùng tìm hiểu trong bài học này!

    Trả lời:

    Khi đặt các dây lạt để cắt bánh chưng, các dây lạt tạo ra trên mặt bánh chưng những cặp góc kề bù, đối đỉnh, các cặp góc bằng nhau được tạo bởi tia phân giác của góc.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  2. Quan sát hình vẽ bên. Em hãy nhận xét quan hệ về đỉnh, về cạnh của hai góc được đánh dấu.

    Câu hỏi:

    Quan sát hình vẽ bên. Em hãy nhận xét quan hệ về đỉnh, về cạnh của hai góc được đánh dấu.
    Quan sát hình vẽ bên. Em hãy nhận xét quan hệ về đỉnh, về cạnh của hai góc được đánh dấu (ảnh 1)

    Trả lời:

    Hai góc được đánh dấu trên hình có chung một đỉnh và chung một cạnh, hai cạnh còn lại là hai tia đối nhau.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  3. Cho ba tia Ox, Oy, Oz như Hình 3,1, trong đó Ox và Oy là hai tia đối nhau. a) Em hãy nhận xét quan hệ về đỉnh, về cạnh của hai góc xOz và zOy. b) Đo rồi tính tổng số đo hai góc xOz và zOy.

    Câu hỏi:

    Cho ba tia Ox, Oy, Oz như Hình 3,1, trong đó Ox và Oy là hai tia đối nhau.
    a) Em hãy nhận xét quan hệ về đỉnh, về cạnh của hai góc xOz và zOy.
    b) Đo rồi tính tổng số đo hai góc xOz và zOy.
    Cho ba tia Ox, Oy, Oz như Hình 3,1, trong đó Ox và Oy là hai tia đối nhau.  a) Em hãy nhận xét quan hệ về đỉnh, về cạnh của hai góc xOz và zOy (ảnh 1)

    Trả lời:

    a) Hai góc xOz và zOy có chung cạnh Oz, hai cạnh Ox và Oy là hai tia đối nhau.
    b) Góc yOz bằng 40o; góc xOz bằng 140o.
    Tổng số đo hai góc yOz và xOz là: 40o + 140o = 180o.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  4. Hai góc được đánh dấu trong hình nào dưới đây là hai góc kề bù?

    Câu hỏi:

    Hai góc được đánh dấu trong hình nào dưới đây là hai góc kề bù?
    Hai góc được đánh dấu trong hình nào dưới đây là hai góc kề bù (ảnh 1)

    Trả lời:

    Hai góc O1 và O2 ở hình a) có chung một cạnh, hai cạnh còn lại là hai tia đối nhau nên hai góc O1 và O2 ở hình a) là hai góc kề bù.
    Hai góc O1 và O2 ở hình b) có chung một cạnh nhưng hai cạnh còn lại không phải hai tia đối nhau nên hai góc O1 và O2 ở hình b) không phải hai góc kề bù.
    Hai góc M1 và M2 ở hình c) có chung một cạnh, hai cạnh còn lại là hai tia đối nhau nên hai góc M1 và M2 ở hình c) là hai góc kề bù.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  5. Viết tên hai góc kề bù trong Hình 3.4 và tính số đo góc mOt.

    Câu hỏi:

    Viết tên hai góc kề bù trong Hình 3.4 và tính số đo góc mOt.
    Viết tên hai góc kề bù trong Hình 3.4 và tính số đo góc mOt (ảnh 1)

    Trả lời:

    Hai góc kề bù trong Hình 3.4 là góc mOt và góc nOt.
    Do góc mOt và góc nOt là hai góc kề bù nên tổng số đo hai góc mOt và góc nOt bằng 180o.
    Khi đó số đo góc mOt bằng 180o – 60o = 120o.
    Vậy số đo góc mOt bằng 120o.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

Tags : Tags Bài tập Góc ở vị trí đặc biệt. Tia phân giác của một góc có đáp án
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Cho tam giác ABC vuông tại A, đường cao AH chia cạnh BC thành hai đoạn thẳng HB = 7cm và HC = 18cm. Điểm E thuộc đoạn thẳng HC sao cho đường thẳng  đi qua E và vuông góc với BC chia tam giác ABC thành hai phần có diện tích bằng nhau. Tính CE.

Next post

Cho tam giác ABC, phân giác AD. Gọi E, F lần lượt là hình chiếu của B và C lên AD. Chọn khẳng định không đúng.

Bài liên quan:

c) Gọi G là trung điểm của DF; AD cắt CF tại H và cắt CG tại I. Chứng minh DI = 2IH.

b) Tia ED cắt AB tại F. Chứng minh AC = AF.

Cho tam giác ABC vuông tại A có AB < AC. Vẽ AD là tia phân giác của góc BAC (D ∈ BC). Trên AC lấy điểm E sao cho AE = AB. a) Chứng minh ABD^=AED^ .

d) Gọi M là trung điểm của HC, N là trung điểm của HB, I là giao điểm của BM và CN. Chứng minh ba điểm A, H, I thẳng hàng.

c) So sánh HB và HD.

b) Chứng minh tam giác HDE là tam giác cân.

Cho tam giác ABC cân tại A có các đường cao BD và CE cắt nhau tại H. a) Chứng minh ∆ADB = ∆AEC.

c) Từ E kẻ EH vuông góc với BC tại H. Cho biết HBE^=50°;MEB^=25° . Tính số đo các góc HEB và HEM.

Leave a Comment Hủy

Mục lục

  1. c) Gọi G là trung điểm của DF; AD cắt CF tại H và cắt CG tại I. Chứng minh DI = 2IH.
  2. b) Tia ED cắt AB tại F. Chứng minh AC = AF.
  3. Cho tam giác ABC vuông tại A có AB < AC. Vẽ AD là tia phân giác của góc BAC (D ∈ BC). Trên AC lấy điểm E sao cho AE = AB. a) Chứng minh ABD^=AED^ .
  4. d) Gọi M là trung điểm của HC, N là trung điểm của HB, I là giao điểm của BM và CN. Chứng minh ba điểm A, H, I thẳng hàng.
  5. c) So sánh HB và HD.
  6. b) Chứng minh tam giác HDE là tam giác cân.
  7. Cho tam giác ABC cân tại A có các đường cao BD và CE cắt nhau tại H. a) Chứng minh ∆ADB = ∆AEC.
  8. c) Từ E kẻ EH vuông góc với BC tại H. Cho biết HBE^=50°;MEB^=25° . Tính số đo các góc HEB và HEM.
  9. b) Gọi I là một điểm trên AC, K là một điểm trên EB sao cho AI = EK. CHứng minh ba điểm I, M, K thẳng hàng.
  10. Cho tam giác ABC có AB < AC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. a) Chứng minh AC = EB và AC song song với EB.
  11. c) Tam giác BAI là tam giác cân.
  12. b) Tam giác OAI là tam giác cân;
  13. Cho tam giác ABC có ba góc nhọn, AB < AC < BC. Các tia phân giác của góc A và góc C cắt nhau tại O. Gọi F là hình chiếu của O trên BC; H là hình chiếu của O trên AC. Lấy điểm I trên đoạn FC sao cho FI = AH. Chứng minh: a) OC vuông góc với FH;
  14. Cho tam giác ABC và điểm G nằm trong tam giác. Chứng minh: Nếu diện tích các tam giác GAB, GBC và GCA bằng nhau thì G là trọng tâm của tam giác đó.
  15. Trong các hình 62a, 62b, 62c, 62d, hình nào có điểm cách đều các đỉnh của tam giác đó? Vì sao?
  16. Cho tam giác ABC có BAC^=110° . Các đường trung trực của AB và AC cắt cạnh BC lần lượt tại E và F. Khi đó, số đo góc EAF bằng:
  17. Cho hai tam giác ABC và MNP có ABC^=MNP^,ACB^=MPN^. Cần thêm một điều kiện để tam giác ABC và tam giác MNP bằng nhau theo trường hợp góc – cạnh – góc là:
  18. c) Trực tâm của các tam giác AEF, MEF, DBC và ABC nằm trên cùng một đường thẳng.
  19. b) Trực tâm của các tam giác ABD và ACD nằm trên đường thẳng BC;
  20. Cho tam giác ABC cân tại A, đường trung tuyến AM. Từ M kẻ ME vuông góc với AB (E ∈ AB), kẻ MF vuông góc với AC (F ∈ AC). Gọi I là giao điểm của AM và EF. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh: a) AM vuông góc với EF;
  21. c) Tìm điều kiện của tam giác ABC để H cách đều các đỉnh của tam giác BAE.
  22. b) Chứng minh trực tâm của tam giác DAE nằm ngoài tam giác đó.
  23. Cho tam giác ABC vuông tại A có AB < AC, đường phân giác BD. Vẽ DE vuông góc với BC tại E. a) Chứng minh trực tâm H của tam giác BAE nằm trên đường thẳng BD.
  24. b) Tìm điều kiện của tam giác ABC để I là trọng tâm của tam giác BCD.
  25. Cho tam giác ABC vuông tại A. Trên tia đối của tia AB lấy điểm D sao cho AB = AD. Vẽ BE vuông góc với CD tại E. Gọi I là giao điểm của AC và BE; K là hình chiếu của I trên BC. a) Chứng minh ba điểm D, I, K thẳng hàng.
  26. Cho tam giác ABC có trực tâm H đồng thời cũng là điểm cách đều ba đỉnh của tam giác. Tính số đo các góc của tam giác ABC.
  27. Cho tam giác ABC nhọn có các đường cao AD, BE, CF cắt nhau tại H (Hình 61). Tìm trực tâm của các tam giác HAB, HBC, HCA.
  28. Cho tam giác ABC có AB &gt; AC &gt; BC và K là trực tâm. Trong các phát biểu sau, phát biểu nào đúng?
  29. c) AH vuông góc với BC.
  30. b) CH vuông góc với AB.
  31. Cho tam giác ABC có AB > AC > BC và H là trực tâm. Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai? a) H là giao điểm ba đường trung trực của tam giác ABC.
  32. b) Tính số đo các góc của tam giác MKH
  33. Cho tam giác ABC vuông cân ở A có đường phân giác AM. Gọi E là điểm nằm giữa B và C. Vẽ BH và CK vuông góc với AE (H, K thuộc AE). a) Chứng minh ba đường trung trực tương ứng của các đoạn thẳng AB, AC, KH cùng đi qua điểm M.
  34. c) Tính số đo các góc của tam giác IBC.
  35. b) Đường tròn tâm I bán kính IA đi qua những điểm nào?
  36. Cho tam giác ABC cân ở A có BAC^=120° . Đường trung trực của các cạnh AB và AC cắt nhau ở I và cắt cạnh BC lần lượt tại D, E (Hình 56). a) Chứng minh điểm I nằm trên đường trung trực của đoạn thẳng DE.
  37. b) Nếu xOy^=30°  thì EOF^=60° .
  38. Cho góc nhọn xOy và điểm M nằm trong góc xOy. Gọi E, F là hai điểm nằm ngoài góc xOy sao cho Ox là đường trung trực của đoạn thẳng ME, Oy là đường trung trực của đoạn thẳng MF (Hình 55). Chứng minh: a) O là giao điểm ba đường trung trực của tam giác EMF.
  39. Chứng minh rằng các đường trung trực của tam giác vuông đi qua trung điểm của cạnh huyền.
  40. Cho tam giác đều ABC có I là điểm cách đều ba cạnh AB, BC, CA. Chứng minh rằng I cách đều ba đỉnh A, B, C và cũng là trọng tâm của tam giác ABC.
  41. Chọn phát biểu sai:
  42. Tấm bìa bên dưới có thể tạo lập thành một hình lăng trụ đứng có đáy là tam giác đều. Chiều cao của hình lăng trụ đứng là:
  43. Chọn khẳng định đúng trong các khẳng định sau:
  44. Cho hình hộp chữ nhật ABCD. EFGH. Cho AB = 4 cm, BC = 2 cm, AE = 4 cm. Khẳng định đúng là:
  45. Hãy chọn khẳng định sai. Hình lập phương ABCD.A’B’C’D’ có:
  46. Trong hình dưới đây có bao nhiêu hình lập phương, bao nhiêu hình hộp chữ nhật?
  47. Kết quả của phép tính −78−54 là:
  48. Cho biểu thức 21+154:38−16.57. Chọn khẳng định đúng?
  49. Cho các điểm A, B, C, D biểu diễn các số trên trục số như sau: Điểm biểu diễn số 6−4 là:
  50. Cho a = 2−9 và b = -13. Khẳng định nào sau đây là đúng?
  51. Số đối của số hữu tỉ 94 là
  52. Trong các câu sau, câu nào đúng?

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán