Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SGK Toán 10 – Cánh diều

Giải SGK Toán 10 Bài 3 (Cánh diều): Dấu của tam thức bậc hai

By admin 11/04/2023 0

Giải bài tập Toán lớp 10 Bài 3: Dấu của tam thức bậc hai

Video giải Toán 10 Bài 3: Dấu của tam thức bậc hai – Cánh diều

Giải Toán 10 trang 44 Tập 1

Câu hỏi khởi động trang 44 Toán lớp 10: Để xây dựng phương án kinh doanh cho một loại sản phẩm, doanh nghiệm tính toán lợi nhuận y (đồng) theo công thức sau: y=−200x2+92000x−8400000, trong đó x là số sản phẩm được bán ra. Như vậy, việc đánh giá hiệu quả kinh doanh loại sản phẩm trên dẫn tới việc xét dấu của y=−200x2+92000x−8400000, tức là ta cần xét dấu của tam thức bậc hai f(x)=−200x2+92000x−8400000.

Làm thế nào để xét dấu của tam thức bậc hai?

Phương pháp giải:

Tính Δ′=(b′)2−ac với b=92000=2b′,a=−200,c=8400000

Nếu Δ′>0 thì f(x) có 2 nghiệm x1,x2(x1<x2). Khi đó:

f(x) cùng dấu với hệ số a với mọi x thuộc các khoảng (−∞;x1) và (x2;+∞);

f(x) trái dấu với hệ số a với mọi x thuộc các khoảng (x1;x2)

Lời giải:

Xét dấu tam thức bậc hai tức là kiểm tra về dấu của tam thức bậc hai theo từng (khoảng) giá trị của ẩn.

Ta có a=−200<0,b=92000,c=8400000

Δ′=(92000:2)2−(−200).8400000=436000000>0

⇒f(x) có 2 nghiệm x=230±10109. Khi đó:

f(x)<0 với mọi x thuộc các khoảng (−∞;230−10109) và (230+10109;+∞);

f(x)>0 với mọi x thuộc các khoảng (230−10109;230+10109)

I. Dấu của tam thức bậc hai

Hoạt động 1 trang 44 Toán lớp 10: a) Quan sát Hình 17 và cho biết dấu của tam thức bậc hai f(x)=x2−2x+2

 Hoạt động 1 trang 44 Toán lớp 10 Tập 1 | Cánh diều (ảnh 1)

b) Quan sát Hình 18 và cho biết dấu của tam thức bậc hai f(x)=−x2+4x−5

 Hoạt động 1 trang 44 Toán lớp 10 Tập 1 | Cánh diều (ảnh 2)

c) Từ đó rút ra mối liên hệ về dấu của tam thức bậc hai f(x)=ax2+bx+c(a≠0) với dấu của hệ số a trong trường hợp Δ<0.

Phương pháp giải:

a) ax2+bx+c>0 ứng với phần parabol  y=ax2+bx+c nằm phía trên trục hoành.

b) ax2+bx+c<0 ứng với phần parabol  y=ax2+bx+c nằm phía dưới trục hoành.

c) Rút ra nhận xét.

Lời giải:

a) Ta thấy đồ thị nằm trên trục hoành nên f(x)=x2−2x+2>0.

b) Ta thấy đồ thị nằm dưới trục hoành nên f(x)=−x2+4x−5<0.

c) Ta thấy f(x)=x2−2x+2 có hệ số a=1>0 và f(x)=x2−2x+2>0

f(x)=−x2+4x−5 có hệ số a=-1

Như thế, khi Δ<0 thì tam thức bậc hai f(x)=ax2+bx+c(a≠0) cùng dấu với hệ số a.

Giải Toán 10 trang 45 Tập 1

Hoạt động 2 trang 45 Toán lớp 10: a) Quan sát Hình 19 và cho biết dấu của tam thức bậc hai f(x)=x2+2x+1

 Hoạt động 2 trang 45 Toán lớp 10 Tập 1 | Cánh diều (ảnh 2)

b) Quan sát Hình 20 và cho biết dấu của tam thức bậc hai f(x)=−x2+4x−4

 Hoạt động 2 trang 45 Toán lớp 10 Tập 1 | Cánh diều (ảnh 1)

c) Từ đó rút ra mối liên hệ về dấu của tam thức bậc hai f(x)=ax2+bx+c(a≠0) với dấu của hệ số a trong trường hợp Δ=0.

Phương pháp giải:

a) Xét giao điểm của đồ thị và trục hoành. Xét dấu của tam thức bậc hai f(x)=x2+2x+1.

b) Xét giao điểm của đồ thị và trục hoành. Xét dấu của tam thức bậc hai f(x)=−x2+4x−4.

c) Rút ra nhận xét.

Lời giải:

a) Từ đồ thị ta thấy x2+2x+1≥0∀x

Và x2+2x+1>0∀x∈R∖{−1}

b) Từ đồ thị ta thấy −x2+4x−4≤0∀x

Và −x2+4x−4<0∀x∈R∖{−2}

c) Nếu Δ=0 thì f(x) cùng dấu với dấu của hệ số a, với mọi x∈R∖{−b2a}

Hoạt động 3 trang 45 Toán lớp 10: a) Quan sát Hình 21 và cho biết dấu của tam thức bậc hai f(x)=x2+3x+2 tùy theo các khoảng của x.

 

b) Quan sát Hình 22 và cho biết dấu của tam thức bậc hai f(x)=−x2+4x−3 tùy theo các khoảng của x.

 Toán lớp 10 Bài 3: Dấu của tam thức bậc hai | Cánh diều (ảnh 2)

c) Từ đó rút ra mối liên hệ về dấu của tam thức bậc hai f(x)=ax2+bx+c(a≠0) với dấu của hệ số tùy theo các khoảng của x trong trường hợp Δ>0.

Phương pháp giải:

a) Xét các khoảng (−∞;−2);(−2;−1);(−1;+∞)

b) Xét các khoảng (−∞;1);(1;3);(3;+∞)

c) Rút ra nhận xét.

Lời giải:

a) Ta thấy trên (−∞;−2): Đồ thị nằm trên trục hoành

=> f(x)=x2+3x+2>0∀x∈(−∞;−2)

Trên (−2;−1): Đồ thị nằm dưới trục hoành

=> f(x)=x2+3x+2<0∀x∈(−2;−1)

Trên (−1;+∞): Đồ thị nằm trên trục hoành

=> f(x)=x2+3x+2>0∀x∈(−1;+∞)

b)

Trên (−∞;1): Đồ thị nằm dưới trục hoành

=> f(x)=−x2+4x−3<0∀x∈(−∞;1)

Trên (1;3): Đồ thị nằm trên trục hoành

=> f(x)=−x2+4x−3>0∀x∈(1;3)

Trên (3;+∞): Đồ thị nằm dưới trục hoành

=> f(x)=−x2+4x−3<0∀x∈(3;+∞)

c) Nếu Δ>0 thì f(x) cùng dấu vưới hệ số a với mọi x thuộc các khoảng (−∞;x1) và (x2;+∞); f(x) trái dấu với hệ số a với mọi x thuộc khoảng (x1;x2), trong đó  là hai nghiệm của f(x) và x1<x2.

II. Ví dụ

Giải Toán 10 trang 46 Tập 1

Luyện tập vận dụng 1 trang 46 Toán lớp 10: Xét dấu của mỗi tam thức bậc hai sau:

a) f(x)=−2x2+4x−5

b) f(x)=−x2+6x−9

Phương pháp giải:

Sử dụng biệt thức thu gọn Δ′=(b′)2−ac với b=2b′.

+ Nếu Δ′<0 thì f(x) cùng dấu với hệ số a vời mọi x∈R.

+ Nếu Δ′=0 thì f(x) cùng dấu với hệ số a vời mọi x∈R∖{−b′a}.

+ Nếu Δ′>0 thì f(x) có 2 nghiệm x1,x2(x1<x2). Khi đó:

f(x) cùng dấu với hệ số a với mọi x thuộc các khoảng (−∞;x1) và (x2;+∞);

f(x) trái dấu với hệ số a với mọi x thuộc các khoảng (x1;x2)

Lời giải:

a) Ta có a=−2<0, b=4=>b′=2 và c=−5

Δ′=22−(−2).(−5)=−6<0

=>f(x) cùng dấu âm với hệ số a.

=> f(x)<0∀x∈R

b) Ta có: a=−1,b=6,c=−9=>b′=3

Δ′=32−(−1).(−9)=0

−b2a=−b′a=3

=> f(x) cùng dấu âm với hệ số a với mọi x∈R∖{3}

=> f(x)<0∀x∈R∖{3}

Luyện tập vận dụng 2 trang 46 Toán lớp 10: Lập bảng xét dấu của tam thức bậc hai: f(x)=−x2−2x+8

Phương pháp giải:

Bước 1: Tìm nghiệm của f(x)=−x2−2x+8 và hệ số a.

Bước 2: Lập bảng xét dấu.

Lời giải chi tiết:

Tam thức bậc hai f(x)=−x2−2x+8 có hai nghiệm phân biệt x1=−4,x2=2 và hệ số a=−1<0.

Ta có bảng xét dấu f(x) như sau:

 Luyện tập vận dụng 2 trang 46 Toán lớp 10 Tập 1 | Cánh diều (ảnh 1)

Bài tập

Giải Toán 10 trang 48 Tập 1

Bài 1 trang 48 Toán lớp 10: Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

a) x2−2x−3>0 khi và chỉ khi x∈(−∞;−1)∪(3;+∞)

b) x2−2x−3<0 khi và chỉ khi x∈[−1;3]

Phương pháp giải:

– Tìm nghiệm của phương trình f(x)=0

– Nếu Δ′>0 thì f(x) có 2 nghiệm x1,x2(x1<x2). Khi đó:

f(x) cùng dấu với hệ số a với mọi x thuộc các khoảng (−∞;x1) và (x2;+∞);

f(x) trái dấu với hệ số a với mọi x thuộc các khoảng (x1;x2)

Lời giải:

a) Phương trình x2−2x−3=0 có 2 nghiệm phân biệt x1=−1,x2=3

Có a=1>0 nên f(x)=x2−2x−3>0 khi và chỉ khi x∈(−∞;−1)∪(3;+∞)

=> Phát biểu đúng.

b) Phương trình x2−2x−3=0 có 2 nghiệm phân biệt x1=−1,x2=3

Có a=1>0 nên f(x)=x2−2x−3<0 khi và chỉ khi x∈(−1;3)

=> Phát biểu sai.

Bài 2 trang 48 Toán lớp 10: Tìm nghiệm và lập bảng xét dấu của tam thức bậc hai f(x) với đồ thị được cho ở mỗi Hình 224a, 24b, 24c.

Phương pháp giải:

– Quan sát đồ thị và hoành độ giao điểm của đồ thị với trục hoành là nghiệm của phương trình f(x)=0.

– Lập bảng xét dấu cho mỗi hình.

Lời giải:

Hình 24a:

Ta thấy đồ thị cắt trục Ox tại điểm (2;0)

=> Phương trình f(x)=0 có nghiệm duy nhất x=2

Ta thấy đồ thị nằm trên trục hoành nên có bảng xét dấu:

Bài 2 trang 48 Toán lớp 10 Tập 1 | Cánh diều (ảnh 3)

Hình 24b:

Ta thấy đồ thị cắt trục Ox tại 2 điểm phân biệt (-4;0) và (-1;0)

=> Phương trình f(x)=0 có 2 nghiệm phân biệt x=−4,x=−1

Trong các khoảng (−∞;−4) và  (−1;+∞) thì đồ thị nằm dưới trục hoành nên f(x)<0

Trong khoảng (−4;−1) thì đồ thị nằm trên trục hoành nên f(x)>0

Bảng xét dấu:

Bài 2 trang 48 Toán lớp 10 Tập 1 | Cánh diều (ảnh 2)
Hình 24c: 

Ta thấy đồ thị cắt trục Ox tại 2 điểm phân biệt (-1;0) và (2;0)

=> Phương trình f(x)=0 có 2 nghiệm phân biệt x=−1,x=2

Trong các khoảng (−∞;−1) và  (2;+∞) thì đồ thị nằm trên trục hoành nên f(x)>0

Trong khoảng (−1;2) thì đồ thị nằm dưới trục hoành nên f(x)<0

Bảng xét dấu:

Bài 2 trang 48 Toán lớp 10 Tập 1 | Cánh diều (ảnh 1)

Bài 3 trang 48 Toán lớp 10: Xét dấu của mỗi tam thức bậc hai sau:

a) f(x)=3x2−4x+1

b) f(x)=9x2+6x+1

c) f(x)=2x2−3x+10

d) f(x)=−5x2+2x+3

e) f(x)=−4x2+8x−4

g) f(x)=−3x2+3x−1

Phương pháp giải:

Sử dụng biệt thức thu gọn Δ′=(b′)2−ac với b=2b′.

+ Nếu Δ′<0 thì f(x) cùng dấu với hệ số a vời mọi x∈R.

+ Nếu Δ′=0 thì f(x) cùng dấu với hệ số a vời mọi x∈R∖{−b′a}.

+ Nếu Δ′>0 thì f(x) có 2 nghiệm x1,x2(x1<x2). Khi đó:

f(x) cùng dấu với hệ số a với mọi x thuộc các khoảng (−∞;x1) và (x2;+∞);

f(x) trái dấu với hệ số a với mọi x thuộc các khoảng (x1;x2)

Lời giải:

a) Ta có a=3>0,b=−4,c=1

Δ′=(−2)2−3.1=1>0

⇒f(x) có 2 nghiệm x=13,x=1. Khi đó:

f(x)>0 với mọi x thuộc các khoảng (−∞;13) và (1;+∞);

f(x)<0 với mọi x thuộc các khoảng (13;1)

b) Ta có a=9>0,b=6,c=1

Δ′=0

⇒f(x) có 1 nghiệm x=−13. Khi đó:

f(x)>0 với mọi x∈R∖{−13}

c) Ta có a=2>0,b=−3,c=10

Δ=(−3)2−4.2.10=−71<0

⇒f(x)>0∀x∈R

d) Ta có a=−5<0,b=2,c=3

Δ′=12−(−5).3=16>0

⇒f(x) có 2 nghiệm x=−35,x=1. Khi đó:

f(x)<0 với mọi x thuộc các khoảng (−∞;−35) và (1;+∞);

f(x)>0 với mọi x thuộc các khoảng (−35;1)

e) Ta có a=−4<0,b=8c=−4

Δ′=0

⇒f(x) có 1 nghiệm x=2. Khi đó:

f(x)<0 với mọi x∈R∖{2}

g) Ta có a=−3<0,b=3,c=−1

Δ=32−4.(−3).(−1)=−3<0

⇒f(x)<0∀x∈R

Bài 4 trang 48 Toán lớp 10: Một công ty du lịch thông báo giá tiền cho chuyến đi tham quan của một nhóm khách du lịch như sau:

50 khách đầu tiên có giá là 300 000 đồng/người. Nếu có nhiều hơn 50 người đăng kí thì cứ có thêm 1 người, giá vé sẽ giảm 5 000 đồng/người cho toàn bộ hành khách.

a) Gọi x là số lượng khách từ người thứ 51 trở lên của nhóm. Biểu thị doanh thu theo x.

b) Số người của nhóm khách du lịch nhiều nhất là bao nhiêu thì công ty không bị lỗ? Biết rằng chi phí thực sự cho chuyến đi là 15 080 000 đồng.

Phương pháp giải:

a) Biểu thị doanh thu theo x.

b) Tìm điều kiện của x để hàm số biểu diễn doanh thu không âm. Xét dấu hàm số.

Lời giải:

a)

Do x là số lượng khách thứ 51 trở lên nên x>0.

Cứ thêm 1 người thì giá còn (300000-5 000.1) đồng/người cho toàn bộ hành khách.

Thêm x người thì giá còn (300 000-5 000.x) đồng/người cho toàn bộ hành khách.

Doanh thu theo x: (50+x).(300000−5000x) (VNĐ)

b) Do chi phí thực sự cho chuyến đi là 15 080 000 đồng nên để công ty không bị lỗ thì doanh thu phải lớn hơn hoặc bằng 15 080 000 đồng

Khi đó:

(50+x).(300000−5000x)≥15080000⇔(50+x).5000.(60−x)≥15080000⇔(x+50)(60−x)≥3016⇔−x2+10x+3000≥3016⇔−x2+10x−16≥0⇔(x−2)(8−x)≥0⇔(x−2)(x−8)≤0⇔2≤x≤8

Vậy số người của nhóm du khách nhiều nhất là 58 người.

Bài 5 trang 48 Toán lớp 10: Bộ phận nghiên cứu thị trường của một xí nghiệp xác định tổng chi phí để sản xuất

Q sản phẩm là Q2+180Q+140000(nghìn đồng). Giả sử giá mỗi sản phẩm bán ra

thị trường là 1 200 nghìn đồng.

a) Xác định lợi nhuận xí nghiệp thu được sau khi bán hết Q sản phẩm đó, biết rằng lợi nhuận là hiệu của doanh thu trừ đi tổng chi phí để sản xuất.

b) Xí nghiệp sản xuất bao nhiều sản phẩm thì hoà vốn?

c) Xí nghiệp cần sản xuất số sản phẩm là bao nhiêu để không bị lỗ?

Phương pháp giải:

a) Tính doanh thu khi bán hết Q sản phẩm

Lợi nhuận=Doanh thu-Chi phí

b) Để xí nghiệp hòa vốn thì: Lợi nhuận bằng 0.

c) Doanh thu lớn hơn hoặc bằng chi phí thì không bị lỗ.

Lời giải:

a) Doanh thu khi bán hết Q sản phẩm là 1200Q (nghìn đồng)

Lợi nhuận bán hết Q sản phẩm là:

1200Q−(Q2+180Q+140000)=−Q2+1020Q−140000

b) Để xí nghiệp hòa vốn thì: Lợi nhuận bằng 0.

⇔−Q2+1020Q−140000=0⇔[Q≈857Q≈163

Vậy xí nghiệp sản xuất 163 sản phẩm hoặc 857 sản phẩm thì hòa vốn.

c) Để không bị lỗ thì lợi nhuận lớn hơn hoặc bằng 0.

Khi đó:

−Q2+1020Q−140000≥0⇔163,45≤Q≤857,55⇒164≤Q≤857

Vậy để không bị lỗ thì xí nghiệp cần sản xuất số sản phẩm nằm trong khoảng 164 đến 857.

Xem thêm các bài giải SGK Toán 10 Cánh diều hay, chi tiết khác:

Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng

Bài 4: Bất phương trình bậc hai một ẩn

Bài 5: Hai dạng phương trình quy về phương trình bậc hai

Bài tập cuối chương 3

====== ****&**** =====

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

c) Tính giới hạn limx→+∞x2+x−x3−x23

Next post

Tìm các giá trị m để hàm số y=−x3+2×2+2mx−1  đồng biến trên đoạn có độ dài bằng 2.

Bài liên quan:

Giải SGK Toán 10 Bài 1 (Cánh diều): Mệnh đề toán học

Giải SGK Toán 10 Bài 2 (Cánh diều): Tập hợp. Các phép toán trên tập hợp

Giải SGK Toán 10 (Cánh diều) Bài tập cuối chương 1

Giải SGK Toán 10 Bài 1 (Cánh diều): Bất phương trình bậc nhất hai ẩn

Giải SGK Toán 10 Bài 2 (Cánh diều): Hệ bất phương trình bậc nhất hai ẩn

Giải SGK Toán 10 (Cánh diều) Bài tập cuối chương 2

Giải SGK Toán 10 Bài 1 (Cánh diều): Hàm số và đồ thị

Giải SGK Toán 10 Bài 2 (Cánh diều): Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng

Leave a Comment Hủy

Mục lục

  1. Giải SGK Toán 10 Bài 1 (Cánh diều): Mệnh đề toán học
  2. Giải SGK Toán 10 Bài 2 (Cánh diều): Tập hợp. Các phép toán trên tập hợp
  3. Giải SGK Toán 10 (Cánh diều) Bài tập cuối chương 1
  4. Giải SGK Toán 10 Bài 1 (Cánh diều): Bất phương trình bậc nhất hai ẩn
  5. Giải SGK Toán 10 Bài 2 (Cánh diều): Hệ bất phương trình bậc nhất hai ẩn
  6. Giải SGK Toán 10 (Cánh diều) Bài tập cuối chương 2
  7. Giải SGK Toán 10 Bài 1 (Cánh diều): Hàm số và đồ thị
  8. Giải SGK Toán 10 Bài 2 (Cánh diều): Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng
  9. Giải SGK Toán 10 Bài 4 (Cánh diều): Bất phương trình bậc hai một ẩn
  10. Giải SGK Toán 10 Bài 5 (Cánh diều): Hai dạng phương trình quy về phương trình bậc hai
  11. Giải SGK Toán 10 (Cánh diều) Bài tập cuối chương 3
  12. Giải SGK Toán 10 Bài 1 (Cánh diều): Giá trị lượng giác của một góc từ 0° đến 180°. Định lí côsin và định lí sin trong tam giác
  13. Giải SGK Toán 10 Bài 2 (Cánh diều): Giải tam giác. Tính diện tích tam giác
  14. Giải SGK Toán 10 Bài 3 (Cánh diều): Khái niệm vectơ
  15. Giải SGK Toán 10 Bài 4 (Cánh diều): Tổng và hiệu của hai vectơ
  16. Giải SGK Toán 10 Bài 5 (Cánh diều): Tích của một số với một vectơ
  17. Giải SGK Toán 10 Bài 6 (Cánh diều): Tích vô hướng của hai vectơ
  18. Giải SGK Toán (Cánh diều): Bài tập cuối chương 4
  19. Giải SGK Toán 10 Bài 1 (Cánh diều): Quy tắc cộng. Quy tắc nhân. Sơ đồ hình cây
  20. Giải SGK Toán 10 Bài 2 (Cánh diều): Hoán vị. Chỉnh hợp
  21. Giải SGK Toán 10 Bài 3 (Cánh diều): Tổ hợp
  22. Giải SGK Toán 10 Bài 4 (Cánh diều): Nhị thức Newton
  23. Giải SGK Toán (Cánh diều): Bài tập cuối chương 5
  24. Giải SGK Toán 10 Bài 1 (Cánh diều): Số gần đúng. Sai số
  25. Giải SGK Toán 10 Bài 2 (Cánh diều): Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu không ghép nhóm
  26. Giải SGK Toán 10 Bài 3 (Cánh diều): Các số liệu đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm
  27. Giải SGK Toán 10 Bài 4 (Cánh diều): Xác suất của biến cố trong một số trò chơi đơn giản
  28. Giải SGK Toán 10 Bài 5 (Cánh diều): Xác suất của biến cố
  29. Giải SGK Toán (Cánh diều): Bài tập cuối chương 6
  30. Giải SGK Toán 10 Bài 1 (Cánh diều): Tọa độ của vectơ
  31. Giải SGK Toán 10 Bài 2 (Cánh diều): Biểu thức tọa độ của các phép toán
  32. Giải SGK Toán 10 Bài 3 (Cánh diều): Phương trình đường thẳng
  33. Giải SGK Toán 10 Bài 4 (Cánh diều): Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng
  34. Giải SGK Toán 10 Bài 5 (Cánh diều): Phương trình đường tròn
  35. Giải SGK Toán 10 Bài 6 (Cánh diều): Ba đường conic
  36. Giải SGK Toán (Cánh diều): Bài tập cuối chương 7

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán