Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Học Toán lớp 10 – Kết nối

Lý thuyết Toán lớp 10 Bài 10: Vectơ trong mặt phẳng tọa độ

By admin 09/04/2023 0

Với tóm tắt lý thuyết Toán lớp 10 Bài 10: Vectơ trong mặt phẳng tọa độ sách Kết nối tri thức hay, chi tiết cùng với bài tập tự luyện chọn lọc giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán lớp 10.

Lý thuyết Toán lớp 10 Bài 10: Vectơ trong mặt phẳng tọa độ

A.Lý thuyếtVectơ trong mặt phẳng tọa độ

1. Tọa độ của vectơ

– Trục tọa độ (còn gọi là trục, hay trục số) là một đường thẳng mà trên đó đã xác định một điểm O và một vectơ i→ có độ dài bằng 1. Điểm O gọi là gốc tọa độ, vectơ i→ gọi là vectơ đơn vị của trục. Điểm M trên trục biểu diễn số x0 nếu OM→=x0i→

– Trên mặt phẳng với một đơn vị đo độ dài cho trước, xét hai trục Ox, Oy có chung gốc O và vuông góc với nhau. Kí hiệu vectơ đơn vị của trục Ox là i→, vectơ đơn vị của trục Oy là j→. Hệ gồm hai trục Ox, Oy như vậy được gọi là hệ trục tọa độ Oxy. Điểm O gọi là gốc tọa độ, trục Ox gọi là trục hoành, trục Oy gọi là trục tung. Mặt phẳng chứa hệ trục tọa độ Oxy gọi là mặt phẳng tọa độ Oxy hay mặt phẳng Oxy.

Lý thuyết Toán 10 Kết nối tri thức Bài 10: Vectơ trong mặt phẳng tọa độ

– Mỗi vectơ u→ trên mặt phẳng Oxy, có duy nhất cặp số (x0; y0) sao cho u→=x0i→+y0j→.

Ta nói vectơ u→ có tọa độ (x0; y0) và viết u→ = (x0; y0) hay u→(x0; y0). Các số x0, y0 tương ứng được gọi là hoành độ, tung độ của u→.

– Hai vectơ bằng nhau khi và chỉ khi chúng có cùng tọa độ.

u→(x;y)=v→(x‘;y‘)⇔x=x‘y=y‘.

Ví dụ : Trong mặt phẳng tọa độ Oxy, u→ = (2; –4). Hãy biểu diễn vectơ u→ qua vectơ i→ và j→.

Hướng dẫn giải

Vì u→ = (2; –4) nên u→=2i→+(−4)j→=2i→−4j→

Vậy u→=2i→−4j→.

2. Biểu thức tọa độ của các phép toán vectơ

Cho hai vectơ u→ = (x; y) và v→ = (x’; y’). Khi đó :

u→ + v→ = (x + x’ ; y + y’) ;

u→ – v→ = (x – x’ ; y – y’) ;

k u→ = (kx ; ky) với k ∈ℝ.

Ví dụ : Cho u→ = (2; 3), = (–1; 2).

a) Tìm tọa độ của u→ + v→; u→ – v→.

b) Tìm tọa độ của vectơ 4u→.

Hướng dẫn giải

a) Ta có:

u→ + v→ = (2 + (–1); 3 + 2) = (1; 5)

u→ – v→ = (2 – (–1); 3 – 2) = (3; 1).

Vậy u→ + v→ = (1; 5) ; u→ – v→ = (3; 1).

b) 4u→ = (4.2 ; 4.3) = (8; 12)

Vậy 4u→ = (8; 12).

Nhận xét:

– Vectơ v→(x’; y’) cùng phương với vectơ u→(x; y) ≠ 0→ khi và chỉ khai tồn tại số k sao cho x’ = kx, y’ = ky (hay là x‘x=y‘y nếu xy ≠ 0).

– Nếu điểm M có tọa độ (x; y) thì vectơ OM→ có tọa độ (x; y) và độ dài |OM→|=x2+y2.

– Với vectơ u→ = (x; y), ta lấy điểm M(x; y) thì u→ = OM→. Do đó |u→|=|OM→|=x2+y2.

– Với hai điểm M(x; y) và N(x’ ; y’) thì và khoảng cách giữa hai điểm M, N là MN = |MN→|=(x‘−x)2+(y‘−y)2.

Ví dụ: Trong mặt phẳng tọa độ Oxy, cho ba điểm A(1; –2), B(3; 2), C(7; 4).

a) Tìm tọa độ của các vectơ AB→,BC→.

b) So sánh các khoảng cách từ B tới A và C.

c) Ba điểm A, B, C có thẳng hàng không?

Hướng dẫn giải

a) Ta có AB→=(3−1;2−(−2))=(2;4);

BC→=(7−3;4−2)=(4;2).

b) Các khoảng cách từ B đến A và C lần lượt là:

AB = |AB→|=22+42=20=25;

BC = |BC→|=42+22=20=25.

Suy ra AB = BC = 25.

Vậy khoảng cách từ B đến A bằng khoảng cách từ B đến C.

c) Hai vectơ AB→=(2;4) và BC→=(4;2) không cùng phương (vì 24≠42).

Do đó các điểm A, B, C không cùng nằm trên cùng một đường thẳng.

Vậy ba điểm A, B, C không thẳng hàng.

Chú ý:

– Trung điểm M của đoạn thẳng AB có tọa độ là xA+xB2;yA+yB2.

– Trọng tâm G của tam giác ABC có tọa độ là xA+xB+xC3;yA+yB+yC3.

B.Bài tập tự luyện

Bài 1: Cho u→=(3;−2) và v→=(7;4). Tìm tọa độ của các vectơ u→+v→, u→−v→, 3u→−4v→ .

Hướng dẫn giải

Ta có u→+v→ = (3 + 7; (–2) + 4) = (10; 2)

u→−v→ = (3 – 7 ; (–2) – 4) = (–4 ;–6)

3u→=(3.3;3.(−2))=(9;−6)

4v→=(4.7;4.4) = (28;16)

Suy ra: 3u→−4v→=(9−28;(−6)−16)=(−19;−22).

Vậy: u→+v→ = (10 ; 2) ; u→−v→ =(4 ;– 6) ; 3u→−4v→=(−19;−22).

Bài 2: Trong mặt phẳng tọa độ Oxy cho các điểm A(1; –2) và B(2; 1).

a) Tính độ dài các đoạn thẳng OA, OB.

b) Tam giác OAB là tam giác gì? Vì sao?

Hướng dẫn giải

a) Ta có OA→=(1;−2)⇒|OA→|=12+(−2)2=5.

Suy ra OA = |OA→|=5

Ta có OB→=(2;1)⇒|OB→|=22+12=5.

Suy ra OB = |OB→|=5

Vậy OA = 5; OB = 5.

b) Ta có: AB→=1;3 nên AB=AB→=12+32=10.

Xét tam giác OAB có OA = OB nên tam giác OAB là tam giác cân tại O.

Vậy tam giác OAB cân tại O.

Bài 3: Cho hình bình hành ABCD có A(–1; 3), B(2; 4), C(0; 1). Tìm tọa độ đỉnh D.

Hướng dẫn giải

Giả sử D(x; y), khi đó AD→=(x+1;y−3); BC→=(0−2;1−4)=(−2;−3).

Vì ABCD là hình bình hành nên ta có: AD→=BC→. Do đó:

x+1=−2y−3=−3⇔x=−3y=0

Vậy tọa độ điểm D(–3 ; 0).

====== ****&**** =====

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Người ta đặt được vào trong một hình nón hai khối cầu có bán kính lần lượt là a và 2a sao cho các khối cầu đều tiếp xúc với mặt xung quanh của hình nón, hai khối cầu tiếp xúc với nhau và khối cầu lớn tiếp xúc với đáy của hình nón. Bán kính đáy của hình nón đã cho là

Next post

Cho hình nón đỉnh S có chiều cao bằng bán kính đáy và bằng 2a. Mặt phẳng (P) đi qua S cắt đường tròn đáy tại A và B sao cho AB=23a. Khoảng cách từ tâm của đường tròn đáy đến (P) bằng

Bài liên quan:

Lý thuyết Toán lớp 10 Bài 12: Số gần đúng và sai số

Lý thuyết Toán lớp 10 Bài 8: Tổng và hiệu của hai vectơ

Lý thuyết Toán lớp 10 Bài 9: Tích của một vectơ với một số

Lý thuyết Toán lớp 10 Bài 11: Tích vô hướng của hai vectơ

Lý thuyết Toán lớp 10 Chương 4: Vecto

Lý thuyết Toán lớp 10 Bài 14: Các số đặc trưng đo độ phân tán

Lý thuyết Toán lớp 10 Chương 5: Các số đặc trưng của mẫu số liệu không ghép nhóm

Lý thuyết Toán lớp 10 Bài 7: Các khái niệm mở đầu

Leave a Comment Hủy

Mục lục

  1. Lý thuyết Toán lớp 10 Bài 1: Mệnh đề
  2. Lý thuyết Toán lớp 10 Bài 2: Tập hợp và các phép toán trên tập hợp
  3. Lý thuyết Toán lớp 10 Chương 1: Mệnh đề và Tập hợp
  4. Lý thuyết Toán lớp 10 Bài 3: Bất phương trình bậc nhất hai ẩn
  5. Lý thuyết Toán lớp 10 Bài 4: Hệ bất phương trình bậc nhất hai ẩn
  6. Lý thuyết Toán lớp 10 Chương 2: Bất phương trình và hệ phương trình bậc nhất hai ẩn
  7. Lý thuyết Toán lớp 10 Bài 5: Giá trị lượng giác của một góc từ 0 đến 180
  8. Lý thuyết Toán lớp 10 Bài 6: Hệ thức lượng trong tam giác
  9. Lý thuyết Toán lớp 10 Chương 3: Hệ thức lượng trong tam giác
  10. Lý thuyết Toán lớp 10 Bài 7: Các khái niệm mở đầu
  11. Lý thuyết Toán lớp 10 Bài 8: Tổng và hiệu của hai vectơ
  12. Lý thuyết Toán lớp 10 Bài 9: Tích của một vectơ với một số
  13. Lý thuyết Toán lớp 10 Bài 11: Tích vô hướng của hai vectơ
  14. Lý thuyết Toán lớp 10 Chương 4: Vecto
  15. Lý thuyết Toán lớp 10 Bài 12: Số gần đúng và sai số
  16. Lý thuyết Toán lớp 10 Bài 13: Các số đặc trưng đo xu thế trung tâm
  17. Lý thuyết Toán lớp 10 Bài 14: Các số đặc trưng đo độ phân tán
  18. Lý thuyết Toán lớp 10 Chương 5: Các số đặc trưng của mẫu số liệu không ghép nhóm

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán