Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 12

100 câu Trắc nghiệm Hàm số mũ. Hàm số lôgarit có đáp án 2023 – Toán 12

By admin 07/10/2023 0

Giới thiệu về tài liệu:

– Số trang: 10 trang

– Số câu hỏi trắc nghiệm: 100 câu

– Lời giải & đáp án: có

Mời các quý thầy cô và các em học sinh cùng tham khảo và tải về chi tiết tài liệu dưới đây:

Trắc nghiệm Hàm số mũ. Hàm số lôgarit có đáp án – Toán 12

Câu 1: Viết các số

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

theo thứ tự tăng dần

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Ta có -1 < 0 < √2 < π và 0 < 1/3 < 1 nên

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn đáp án A.

Câu 2: Tìm đạo hàm của hàm số y = log5(xex)

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Để thuận tiện, ta viết lại

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn đáp án D

Câu 3: Tìm các khoảng đồng biến của hàm số y = x2e-4x

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Tập xác định R.

Ta có:

y’ = 2xe-4x + x2e-4x(-4) = 2e-4xx(1 – 2x)

Bảng biến thiên

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Khoảng đồng biến của hàm số là (0; 1/2) .

Chọn đáp án C

Câu 4: Tìm các khoảng nghịch biến của hàm số y = 3ln(x +1) + x – x2/2

A.(-1; 2)   C. (-2 ;-1) và (2; +∞)

B. (2; +∞)   D. (-∞; -2) và (-1 ;2)

Tập xác định : (-1; +∞)

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bảng biến thiên :

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Kết hợp điều kiện, x > -1.

Từ đó, khoảng nghịch biến của hàm số là(2; +∞) .

Chọn đáp án B

Câu 5: Cho hai số thực a và b , với 0 < a < b < 1. Khẳng định nào sau đây là đúng ?

A. logba < 1 < logab   C. logab < 1 < logba

B. logba < logab < 1    D. 1 < logab < logba

Đặt c = b – a ta có c > 0.

Vì 0 < a < b < 1 nên các hàm số y = logax và logbx nghịch biến trên (0; +∞) nên ta có logab = loga(a + c) < logaa = 1 và logba = logb(b – c) > logbb = 1.

Vậy logab < a < logba

Chọn đáp án C.

Câu 6: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x3e-2x trên đoạn [-1; 4]

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

y’ = 3x2e-2x + x3e-2x(-2) = 3x2e-2x – 2x3e-2x = x2(3 – 2x)e-2x

y’= 0 <=> x = 0 (loại) hoặc x = 3/2

Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn đáp án A

Câu 7: Số lượng cá thể của một mẻ cấy vi khuẩn sau t ngày kể từ lúc ban đầu được ước lượng bởi công thức N(t) = 1200.(1,148)t. Hãy tính số lượng cá thể của mẻ vi khuẩn ở hai thời điểm: ban đầu và sau 10 ngày. Làm tròn kết quả đến hàng trăm có kết quả là:

A. 1200 và 4700 cá thể    C. 1200 và 1400 cá thể

B. 1400 và 4800 cá thể    D. 1200 và 4800 cá thể

Số lượng ban đầu: N(0) = 1200.(1,148)0 = 1200 cá thể

Số lượng sau 10 ngày: N(10) = 1200.(1,148)10 ≈ 4771 ≈4800 cá thể

Chọn đáp án D.

Câu 8: Dựa trên dữ liệu của WHO (Tổ chức Y tế thế giới), số người trên thế giới bị nhiễm HIV trong khoảng từ năm 1985 đến 2006 được ước lượng bằng công thức

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

trong đó N(t) tính bằng đơn vị triệu người, t tính bằng đơn vị năm và t = 0 ứng với đầu năm 1985. Theo công thức trên, có bao nhiêu số người trên thế giới bị nhiễm HIV ở thời điểm đầu năm 2005?

A. 37,94 triệu người   C. 38,42 triệu người

B. 37,31 triệu người   D. 39,88 triệu người

Ta có 2005 – 1985 = 20 (năm). Vậy đầu năm 2005 ứng với t = 20. Số cần tìm

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn đáp án A.

Câu 9: Biết rằng năm 2003 dân số Việt Nam là 80 902 000 người và tỉ lệ tăng dân số là 1,47%. Hỏi nếu vẫn giữ nguyên tỉ lệ tăng dân số hàng năm đó thì năm 2020 dân số Việt Nam sẽ là bao nhiêu (làm tròn kết quả đến hàng nghìn)?

A. 101119000 người    C. 103870000 người

B. 103681000 người    D. 106969000 người

Công thức tính dân số theo dữ kiện đã cho là: N(t) = 80902000.e0,0147t ở đó thời gian t tính bằng năm và t = 0 ứng với đầu năm 2003.

Ta có 2020 – 2003 = 17.

Vậy năm 2020 ứng với t = 17

Dân số năm 2020 tính theo dữ kiện đã cho : N(17) = 80902000.e17.0,0147t ≈ 103870000 người.

Chọn đáp án C.

Câu 10: Nồng độ c của một chất hóa học sau thời gian t xảy ra phản ứng tự xúc tác được xác định bằng công thức

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Hãy chọn phát biểu đúng :

A. Nồng độ c ngày càng giảm

B. Nồng độ c ngày càng tăng

C. Trong khoảng thời gian đầu nồng độ c tăng, sau đó giảm dần

D. Trong khoảng thời gian đầu nồng độ c giảm, sau đó tăng dần

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

với mọi t ≥ 0 nên c(t) tăng trên [0; +∞] , nghĩa là nồng độ c ngày càng tăng.

Chọn đáp án B.

Câu 11: Cho các hàm số:

(I) y = (0,3)-x   (II) y = (1,3)-2x

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Trong các hàm số đã cho, hàm số nào đồng biến trên R ?

A. Chỉ có (I) và (II)    C. Chỉ có (IV)

B. Chỉ có (I) và (IV)   D. Chỉ có (II) và (III)

Hàm số đồng biến khi a > 1.

Viết lại các hàm số về dạng hàm số mũ y = ax :

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Trong bốn cơ số ta thấy chỉ có hai cơ số lớn hơn 1 là

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Do đó chỉ có hai hàm số (I) và (IV) là đồng biến trên R

Câu 12: Cho các phát biểu sau đây về đồ thị của hàm số y = logax (0 < a ≠ 1):

(I) Cắt trục hoành

(II) Cắt trục tung

(III) Nhận trục tung làm tiệm cận đứng

(IV) Nhận trục hoành làm tiệm cận ngang

Trong những phát biểu trên, phát biểu nào đúng ?

A. Chỉ có (I), (II) và (III)    C. Chỉ có (II) và (IV)

B. Chỉ có (II), (III) và (IV)    D. Chỉ có (I) và (III)

Đồ thị hàm số y = logax luôn cắt trục hoành tại điểm (1 ;0), luôn nằm bên phải trục tung (vậy không cắt trục tung), nhận trục tung làm tiệm cận đứng, không có tiệm cận ngang. Vậy chỉ có (I) và (III) đúng

Câu 13: Tìm miền xác định của hàm số y = log5(x – 2x2)

A. D = (0; 2)    C. D = (0; 1/2)

B. D = (-∞; 0) ∪ (2; +∞)    D. D = (-∞; 0) ∪ (1/2; +∞)

Điều kiện để hàm số xác định x – 2x2 > 0 <=> 2x2 – x < 0 <=> 0 < x < 1/2 .

Vậy miền xác định là D = (0; 1/2)

Câu 14: Tìm miền xác định của hàm số

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Điều kiện

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Miền xác định là

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 15: Khẳng định nào sau đây là đúng ?

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lưu ý rằng 1 < √2 < e < π

+ π > 1 ⇒ y = πx là hàm đồng biến.

⇒ π > π

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 16: Khẳng định nào sau đây là sai ?

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 17: Số lượng cá thể của một quần thể vi khuẩn sau thời gian t kể từ thời điểm ban đầu được ước lượng bởi công thức

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Phát biểu nào sau đây (về quần thể vi khuẩn nói trên) là đúng ?

A. Số lượng cá thể ngày càng tăng dần

B. Số lượng cá thể ngày càng giảm dần

C. Số lượng cá thể tăng trong khoảng thời gian đầu, sau đó giảm dần

D. Số lượng cá thể giảm trong khoảng thời gian đầu, sau đó tăng dần.

Vì 0 < 3/4 < 1 nên hàm số N(t) = 5000.(3/4)t, t ∈ [0; +∞) nghịch biến (trên [0; +∞) ). Do đó, số lượng cá thể ngày càng giảm dần

Câu 18: Giá trị của một chiếc xe ô tô sau t năm kể từ khi mua được ước lượng bằng công thức G(t) = 600e-0,12t (triệu đồng). Tính giá trị của chiếc xe này tại hai thời điểm : lúc mua và lúc đã sử dụng 5 năm (làm tròn kết quả đến hàng triệu)

A. 532 và 329 (triệu đồng)    C. 600 và 292 (triệu đồng)

B. 532 và 292 (triệu đồng)    D. 600 và 329 (triệu đồng)

Giá trị xe lúc mua: G(0) = 600 triệu đồng

Giá trị xe sau khi mua 5 năm : G(5) = 600.e-0,12.5 ≈ 329 triệu đồng

Câu 19: Tìm đạo hàm của hàm số y = x.23x

A. y’ = 23x(1 + 3xln2)    C. y’ = 23x(1 + 3ln3)

B. y’ = 23x(1 + xln2)    D. y’ = 23x(1 + xln3)

y’ = 23x + x.23x.ln(2)3 = 23x(1 + 3xln2)

Câu 20: Tính đạo hàm của hàm số

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 21: Tìm đạo hàm của hàm số

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Để thuận tiện, ta viết lại

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 22: Viết phương trình tiếp tuyến của đồ thị hàm số y = xe-2x + 2 tại giao điểm của đồ thị hàm số với trục tung

A. y = x + 2    B. y = x    C. y = 2x + 2    D. y = -2x + 2

Đồ thị hàm số cắt trục tung tại điểm A(0 ; 2).

y’ = e-2x(1 – 2x); y'(0) = 1, y(0) = 2. Phương trình tiếp tuyến cần tìm: y = 1(x – 0) + 2 hay y = x + 2

Câu 23: Tìm các khoảng đồng biến của hàm số y = 4x – 5ln(x2 + 1)

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Tập xác định : R

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bảng xét dấu

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Khoảng đồng biến của hàm số là (-∞; 1/2) và (2; +∞)

Câu 24: Cho hàm số y = x2e-x . Khẳng định nào sau đây là đúng ?

A. Hàm số có x = 0 là điểm cực đại, x = 2 là điểm cực tiểu

B. Hàm số có x = 0 là điểm cực tiểu, x = -2 là điểm cực đại

C. Hàm số có x = 0 là điểm cực đại, x = -2 là điểm cực tiểu

D. Hàm số có x = 0 là điểm cực tiểu, x = 2 là điểm cực đại

y’ = e-xx(2 – x). Bảng biến thiên

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Từ bảng biến thiên ta thấy x = 0 là điểm cực tiểu, x = 2 là điểm cực đại của hàm số.

Câu 25: Tìm các đường tiệm cận ngang của đồ thị hàm số

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

A. y = 0    C. y = 0 và y = 3/2

B. y = 3    D. y = 0 và y = 3

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Từ đó suy ra hàm số có hai tiệm cận ngang là y = 3/2 và y = 0

Vậy đồ thị hàm số đã cho có 2 tiệm cận ngang là: y = 3/2; y = 0

Câu 26: Một quần thể vi khuẩn lúc đầu có 200 cá thể và cứ sau một ngày thì số lượng cá thể tăng lên gấp ba lần. Tìm công thức biểu thị số lượng cá thể (kí hiệu N) của quần thể này sau t ngày kể từ lúc ban đầu.

A. N(t) = 200.t3    C. N(t) = 200.e3t

B. N(t) = 200.3t    D. N(t) = 200.et/3

Theo giả thiết, số lượng vi khuẩn sau 1, 2, 3,… ngày là 200.3 ; 200 .3.3 ; 200.3.3.3 ;… Từ đó ta thấy công thức đúng là N(t) = 200.3t

Câu 27: Số lượng cá thể của một loài sinh vật bị suy giảm trong 10 năm theo cách : số lượng năm sau bằng 95% số lượng năm trước đó. Tại thời điểm chọn làm mốc thời gian loài này có 5000 cá thể. Công thức nào sau đây diễn tả số lượng cá thể (kí hiệu N) của loài theo thời gian t (tính bằng năm, 0 ≤ t ≤ 10 ) ?

A. N = 5000.(1 + 0,95)t    C. N = 5000.e-0,95t

B. N = 5000.(0,95)t    D. N = 5000.e-0,05t

Tại thời điểm chọn làm mốc thời gian có 5000 cá thể.

Sau 1 năm số lượng cá thể còn lại là 5000. 95% = 0,95. 5000

Sau 2 năm số lượng cá thể còn lại là : (0,95. 5000). 0,95 = 0,952. 5000

…Sau t ( ) năm số lượng cá thể còn lại là : 0,95t. 5000

Câu 28: Một người gửi tiết kiệm vào ngân hàng số tiền 50 triệu đồng với hình thức lãi kép và lãi suất 6,8% một năm. Hỏi sau 3 năm trong tài khoản tiết kiệm của người đó có bao nhiêu tiền (làm tròn kết quả đến hàng nghìn) ?

A. 60200000 đồng    C. 61280000 đồng

B. 60909000 đồng    D. 61315000 đồng

Số tiền trong tài khoản người đó sau n năm nếu người đó không rút tiền và lãi suất không thay đôỉ được tính theo công thức : P(t) = 50000000(1 + 0,068)t (đồng)

Số tiền cần tính : P(3) = 50000000(1 + 0,068)3 ≈ 60909000(đồng)

Câu 29: Cho hai số thực a và b, với 0 < a < 1 < b. Khẳng định nào sau đây là đúng?

A. logba + logab < 0    C. logba + logab = 0

B. 0 < logba + logab < 2    D. logba + logab ≥ 2

Do 0 < a < 1 nên hàm số y = logax nghịch biến, còn hàm số y = logbx đồng biến trên (0; +∞). Ta có logab < loga1 = 0 và logba < logb1 = 0.

Do đó logab + logba < 0

Câu 30: Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = x2 – 2x + ln(2x + 1) trên [0; 1]

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 31: Dân số Việt Nam năm 2015 là 91,71 triệu người và tỉ lệ tăng dân số là 1,08%. Hỏi nếu vẫn giữ nguyên tỉ lệ tăng dân số hàng năm này thì năm 2020 dân số Việt Nam sẽ là bao nhiêu (làm tròn kết quả đến hàng chục nghìn) ?

A. 96,66 triệu người   C. 96,80 triệu người

B. 96,77 triệu người   D. 97,85 triệu người

Dân số lúc đó: 91,71.e5.0,0108 ≈ 96,80 triệu người

Câu 32: Giả sử số lượng cá thể trong một mẻ cấy vi khuẩn thay đổi theo thời gian t theo công thức

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Tìm số lượng cá thể vi khuẩn lớn nhất (kí hiệu M) và nhỏ nhất (kí hiệu m) của mẻ cấy này trong khoảng thời gian 0 ≤ t ≤ 100

A. M = 161788, m = 128369    C. M = 225000, m = 125000

B. M = 161788, m = 125000   D. M = 225000, m = 128369

N'(t) = 250(20 – t)e-t/20; N'(t) = 0 <=> t = 20

Ta có: N(0) = 125000, N(20) ≈ 161788, N(100) ≈ 128369

Từ đó M = 161788 và m = 125000

Câu 33. Tập xác định của hàm số y = 2x−1 là

A. D = R\{1}.                 B. D = R\{0}.                  C. D = R.                         D. D =  (0; +∞).

Câu 34. Tập xác định của hàm số y = 7x2+x–2 là

A. D = R.                         B. D = R\{1; −2}.            C. D = (−2; 1).                D. D = [2; 1].

Câu 35. Tập xác định của hàm số y = 3x+2x–1  là

A. R.                               B. (1; +∞).                      C. R\{1}.                          D. (−∞; 1).

Câu 36. Tập xác định của hàm số y = log3 (2x + 1 ) là

A. –∞;–12             B. –∞;12                C. 12;+∞                  D. –12;+∞

Câu 37. Tập xác định của biểu thức A = logx+1(2 − x) là

A. (−∞; 2).                      B. (−1; 2)\{0}.                  C. (−1; 2).                        D. (−∞; 2)\{0}.

Câu 38. Tập xác định của hàm số y = log3 (x – 4) là

A. D = (−∞; −4).           B. D = (4; +∞).               C. D = (−4; +∞).            D. D = [4; +∞).

Câu 39. Tập xác định của hàm số y = ln(2x − 2) là

A. D = (1; +∞).              B. D = [−2; 2].                C. D = (2; +∞).              D. D = [2; +∞).

Câu 40. Hàm số  y=log516–x có tập xác định là

A. (6; +∞).                      B. (0; +∞).                      C. (−∞; 6).                      D. R.

Câu 41. Tập xác định của hàm số y = log6  (2x − x2)  là

A. D = (0; 2).                   B. D = (2; +∞).               C. D = (-1;1)                  D . (−∞; 3)

Câu 42. Hàm số nào sau đây có tập xác định là R?

A. y=πlnx                                         B. y=log2x2+x+1

C.  2x+1x                                           D. log(x-1)

Câu 43. Tập xác định của hàm số y = log3(2 + x) + log2(2 − x)  là

A. D = (0; +∞).              B. D = [−2; 2].                C. D = − 2; 2 .               D. D = [2; +∞).

Xem thêm

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Lý thuyết Kinh tế pháp luật 10 Bài 18 (Cánh diều): Hiến pháp nước Cộng hòa xã hội chủ nghĩa Việt Nam về bộ máy nhà nước

Next post

Giải SGK Kinh tế Pháp luật 10 Bài 18 (Cánh diều): Hiến pháp nước Cộng hòa xã hội chủ nghĩa Việt Nam về bộ máy nhà nước

Bài liên quan:

50 Bài tập Sự đồng biến nghịch biến của hàm số (có đáp án)- Toán 12

Chuyên đề Tính đơn điệu của hàm số 2023 hay, chọn lọc

43 câu Trắc nghiệm Sự đồng biến, nghịch biến của hàm số có đáp án 2023 – Toán 12

264 bài tập trắc nghiệm chuyên đề chiều biến thiên của hàm số năm 2023

60 bài tập về Tính đơn điệu của hàm chứa dấu trị tuyệt đối có đáp án 2023

Phương pháp giải Tính đơn điệu của hàm số 2023 (lý thuyết và bài tập)

Xét tính đơn điệu của hàm số hợp có chứa tham số

Tính đồng biến, nghịch biến của hàm hợp thông qua bàng biến thiên và đồ thị

Leave a Comment Hủy

Mục lục

  1. 50 Bài tập Sự đồng biến nghịch biến của hàm số (có đáp án)- Toán 12
  2. Chuyên đề Tính đơn điệu của hàm số 2023 hay, chọn lọc
  3. 43 câu Trắc nghiệm Sự đồng biến, nghịch biến của hàm số có đáp án 2023 – Toán 12
  4. 264 bài tập trắc nghiệm chuyên đề chiều biến thiên của hàm số năm 2023
  5. 60 bài tập về Tính đơn điệu của hàm chứa dấu trị tuyệt đối có đáp án 2023
  6. Phương pháp giải Tính đơn điệu của hàm số 2023 (lý thuyết và bài tập)
  7. Xét tính đơn điệu của hàm số hợp có chứa tham số
  8. Tính đồng biến, nghịch biến của hàm hợp thông qua bàng biến thiên và đồ thị
  9. Tìm tham số M đề hàm số phân thức đồng biến, nghịch biến trên khoảng xác định
  10. Tìm tham số M để hàm số bậc ba đồng biến, nghịch biến trên R
  11. Tìm tham số M để hàm số bậc ba đồng biến, nghịch biến trên khoảng K cho trước
  12. Tìm khoảng đồng biến, nghịch biến bằng bảng biến thiên và đồ thị hàm số
  13. Dạng bài tập Tìm tham số m để hàm số đơn điệu trên tập xác định
  14. Dạng bài tập Tìm khoảng đồng biến và nghịch biến của hàm số
  15. 45 bài tập trắc nghiệm Tính đơn điệu của hàm số lớp 12 có đáp án 2023
  16. SBT Toán 12 Bài 1: Sự đồng biến, nghịch biến của hàm số | Giải SBT Toán lớp 12
  17. Giải Toán 12 Bài 1: Sự đồng biến, nghịch biến của hàm số
  18. 50 Bài tập Cực trị của hàm số (có đáp án)- Toán 12
  19. Phương pháp giải Cực trị của hàm số 2023 (lý thuyết và bài tập)
  20. 50 câu Trắc nghiệm Cực trị của hàm số có đáp án 2023 – Toán 12
  21. 50 bài tập trắc nghiệm cực trị hàm hợp có đáp án và lời giải chi tiết 2023
  22. 116 câu Trắc nghiệm Vận dụng – Vận dụng cao cực trị hàm chứa dấu giá trị tuyệt đối 2023
  23. Phương pháp giải Giá trị lớn nhất, giá trị nhỏ nhất của hàm số 2023 (lý thuyết và bài tập)
  24. Chuyên đề cực trị của hàm số
  25. Tìm M để đồ thị hàm số đạt cực trị tại các điểm A,B thỏa mãn điều kiện cho trước
  26. Cực trị hàm số, hàm số y=f(|x|)
  27. Cực trị hàm số trị tuyệt đối
  28. Dạng bài tập Cực trị có tham số
  29. Dạng bài tập Chứng minh về cực trị
  30. Giải Toán 12 Bài 2: Cực trị của hàm số
  31. 50 Bài tập Giá trị lớn nhất và giá trị nhỏ nhất của hàm số (có đáp án)- Toán 12
  32. Chuyên đề Giá trị lớn nhất, giá trị nhỏ nhất của hàm số 2022 hay, chọn lọc
  33. 50 Bài tập trắc nghiệm về GTLN – GTNN của hàm số chứa dấu giá trị tuyệt đối 2023
  34. Phương pháp giải về Giá trị lớn nhất, giá trị nhỏ nhất của hàm số 2023 (lý thuyết và bài tập)
  35. Chuyên đề Giá trị lớn nhất, giá trị nhỏ nhất – Ôn thi THPT Quốc gia
  36. Phương pháp giải Giá trị lớn nhất và nhỏ nhất của hàm số chứa dấu giá trị tuyệt đối 2023 (lý thuyết và bài tập)
  37. Bài toán tìm giá trị nhỏ nhất, giá trị lớn nhất có chứa tham số
  38. 29 câu Trắc nghiệm Giá trị lớn nhất, giá trị nhỏ nhất của hàm số có đáp án 2023 – Toán 12
  39. Dạng bài tập Ứng dụng thực tế của bài toán Min, Max có đáp án
  40. Giải Toán 12 Bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
  41. 50 Bài tập Đường tiệm cận (có đáp án)- Toán 12
  42. Các dạng bài tập trắc nghiệm về VDC đường tiệm cận của đồ thị hàm số
  43. 241 bài toán trắc nghiệm tiệm cận chứa tham số 2023
  44. Phương pháp giải Tiệm cận của đồ thị hàm số 2023 (lý thuyết và bài tập)
  45. Đường tiệm cận của đồ thị hàm số 2023 (lý thuyết và bài tập)
  46. Chuyên đề đường tiệm cận của đồ thị hàm số
  47. Tìm tham số M để đồ thị hàm số có tiệm cận
  48. Giải Toán 12 Bài 4: Đường tiệm cận
  49. 50 Bài tập Khảo sát sự biến thiên và vẽ đồ thị hàm số (có đáp án)- Toán 12
  50. Phương pháp giải Sự tương giao giữa hai đồ thị hàm số 2023 (lý thuyết và bài tập)
  51. Các dạng bài tâp về Đồ thị hàm số có đáp án
  52. Đồ thị hàm số chứa dấu giá trị tuyệt đối

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán