Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 12

Phương pháp giải Tiệm cận của đồ thị hàm số 2023 (lý thuyết và bài tập)

By admin 07/10/2023 0

Tailieumoi.vn xin giới thiệu đến các quý thầy cô, các em học sinh đang trong quá trình ôn tập tài liệu bài tập Tiệm cận của đồ thị hàm số Toán lớp 12, tài liệu bao gồm 38 trang, tuyển chọn 63 bài tập Tiệm cận của đồ thị hàm số  đầy đủ lý thuyết, phương pháp giải chi tiết và lời giải, giúp các em học sinh có thêm tài liệu tham khảo trong quá trình ôn tập, củng cố kiến thức và chuẩn bị cho kì thi tốt nghiệp THPT môn Toán sắp tới. Chúc các em học sinh ôn tập thật hiệu quả và đạt được kết quả như mong đợi.

Tài liệu Lý thuyết, bài tập về Tiệm cận của đồ thị hàm số có đáp án gồm các nội dung sau:

Bài giảng Toán học 12 Bài 4: Đường tiệm cận

A. LÝ THUYẾT VỀ ĐƯỜNG TIỆM CẬN

1. Đường tiệm cận ngang

    – Cho hàm số y = f(x) xác định trên một khoảng vô hạn (là khoảng dạng (a; +∝), (-∝; b) hoặc (-∝; +∝). Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

    – Nhận xét: Như vậy để tìm tiệm cận ngang của đồ thị hàm số ta chỉ cần tính giới hạn của hàm số đó tại vô cực.

2. Đường tiệm cận đứng

    – Đường thẳng x = x0 được gọi là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

B. BÀI TẬP VỀ ĐƯỜNG TIỆN CẬN

Bài 1. Cho hàm số y = f(x) có 100 Bài tập Tiệm cận của đồ thị hàm số có lời giải (cơ bản) và 100 Bài tập Tiệm cận của đồ thị hàm số có lời giải (cơ bản). Khẳng định nào sau đây là khẳng định đúng?

A. Đồ thị hàm số không có tiệm cận ngang.

B. Đồ thị hàm số có đúng một tiệm cận ngang.

C. Đồ thị hàm số có hai tiệm cận ngang là các đường thẳng y = 1 và y = -1.

D. Đồ thị hàm số có hai tiệm cận ngang là các đường thẳng x = 1 và x = -1.

Bài 2. Cho hàm số y= f(x) có 100 Bài tập Tiệm cận của đồ thị hàm số có lời giải (cơ bản) và 100 Bài tập Tiệm cận của đồ thị hàm số có lời giải (cơ bản) . Khẳng định nào sau đây là khẳng định đúng?

A. Đồ thị hàm số không có tiệm cận ngang.

B. Đồ thị hàm số nằm phía trên trục hoành.

C. Đồ thị hàm số có một tiệm cận ngang là trục hoành.

D. Đồ thị hàm số có một tiệm cận đứng là đường thẳng y = 0

Bài 3. Cho hàm số y= f(x) có 100 Bài tập Tiệm cận của đồ thị hàm số có lời giải (cơ bản) và 100 Bài tập Tiệm cận của đồ thị hàm số có lời giải (cơ bản) . Khẳng định nào sau đây là khẳng định đúng?

A. Đồ thị hàm số đã cho không có tiệm cận đứng

B. Trục hoành và trục tung là hai tiệm cận của đồ thị hàm số đã cho

C. Đồ thị hàm số đã cho có một tiệm cận đứng là đường thẳng y= 0

D. Hàm số đã cho có tập xác định là 100 Bài tập Tiệm cận của đồ thị hàm số có lời giải (cơ bản) .

Bài 4. Cho hàm số y= f(x) có 100 Bài tập Tiệm cận của đồ thị hàm số có lời giải (cơ bản) và 100 Bài tập Tiệm cận của đồ thị hàm số có lời giải (cơ bản) . Khẳng định nào sau đây là khẳng định đúng?

A. Đồ thị hàm số không có tiệm cận ngang.

B. Đồ thị hàm số có hai tiệm cận ngang.

C. Đồ thị hàm số có tiệm cận ngang y= -1 và tiệm cận đứng x = 10 .

D. Đồ thị hàm số hai tiệm cận ngang là các đường y = -1 và y = 10.

Bài 5. Cho hàm số y= f(x) có 100 Bài tập Tiệm cận của đồ thị hàm số có lời giải (cơ bản) và 100 Bài tập Tiệm cận của đồ thị hàm số có lời giải (cơ bản) Khẳng định nào sau đây là đúng?

A. Đồ thị hàm số có một tiệm cận ngang là y=1 và đường thẳng x= 2 không phải là tiệm cận đứng.

B. Đồ thị hàm số có tiệm cận ngang y= 1 và tiệm cận đứng x= 2.

C. Đồ thị hàm số có tiệm cận ngang y= 1 và tiệm cận đứng x= 10.

D. Đồ thị hàm số không có tiệm cận ngang nhưng có một tiệm cận đứng x=2.

Bài 6. Cho hàm số y= f(x) có tập xác định là D=(- 3;3)\{-1; 1}, liên tục trên các khoảng của tập D và có:

100 Bài tập Tiệm cận của đồ thị hàm số có lời giải (cơ bản)

Khẳng định nào sau đây là khẳng định đúng?

A. Đồ thị hàm số có đúng hai TCĐ là các đường thẳng x = -3 và x = 3.

B. Đồ thị hàm số có đúng hai TCĐ là các đường thẳng x = – 1 và x = 1.

C. Đồ thị hàm số có đúng bốn TCĐ là các đường thẳng x = ±1 và x = ±3 .

D. Đồ thị hàm số có sáu TCĐ.

Bài 7. Cho hàm số y= f(x) xác định và liên tục trên R\ {-1}, có bảng biến thiên như sau:

100 Bài tập Tiệm cận của đồ thị hàm số có lời giải (cơ bản)

Khẳng định nào sau đây là khẳng định đúng ?

A. Đồ thị hàm số có tiệm cận đứng y= -1 và tiệm cận ngang x= – 2.

B. Đồ thị hàm số có duy nhất một tiệm cận.

C. Đồ thị hàm số có ba tiệm cận.

D. Đồ thị hàm số có tiệm cận đứng x= -1 và tiệm cận ngang y=-2.

Bài 8. Cho hàm số y= f(x) xác định trên R\{0}, liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:

100 Bài tập Tiệm cận của đồ thị hàm số có lời giải (cơ bản)

Mệnh đề nào sau đây là đúng?

A. Đồ thị hàm số có một đường tiệm cận đứng.

B. Hàm số đạt cực tiểu tại x = 0.

C. Giá trị lớn nhất của hàm số là 2.

D. Hàm số không có cực trị.

Bài 9. Cho hàm số y = f(x) có bảng biến thiên như sau:

100 Bài tập Tiệm cận của đồ thị hàm số có lời giải (cơ bản)

Hỏi đồ thị hàm số đã cho có tất cả bao nhiêu đường tiệm cận?

A. 1                     

B. 2     

C. 3     

D. 4

Bài 10. Đồ thị hàm số 100 Bài tập Tiệm cận của đồ thị hàm số có lời giải (cơ bản) có tất cả bao nhiêu đường tiệm cận?

A. 1.     

B. 2.     

C. 3.     

D. 4.

Bài 11. Tìm tất cả các đường tiệm cận của đồ thị hàm số 100 Bài tập Tiệm cận của đồ thị hàm số có lời giải (cơ bản)

A. Đồ thị hàm số f(x) có đúng một tiệm cận ngang là đường thẳng y=3 và không có tiệm cận đứng.

B. Đồ thị hàm số f(x) không có tiệm cận ngang và có đúng một tiệm cận đứng là đường thẳng x= -1.

C. Đồ thị hàm số f(x) có tất cả hai tiệm cận ngang là các đường thẳng y= -3; y=3 và không có tiệm cận đứng.

D. Đồ thị hàm số f(x) không có tiệm cận ngang và có đúng hai tiệm cận đứng là các đường thẳng x= 1; x= -1.

Xem thêm

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

20 câu Trắc nghiệm Kinh tế pháp luật 10 Bài 3 (Cánh diều) có đáp án 2023: Thị trường

Next post

Lý thuyết Kinh tế pháp luật 10 Bài 3 (Cánh diều): Thị trường

Bài liên quan:

50 Bài tập Sự đồng biến nghịch biến của hàm số (có đáp án)- Toán 12

Chuyên đề Tính đơn điệu của hàm số 2023 hay, chọn lọc

43 câu Trắc nghiệm Sự đồng biến, nghịch biến của hàm số có đáp án 2023 – Toán 12

264 bài tập trắc nghiệm chuyên đề chiều biến thiên của hàm số năm 2023

60 bài tập về Tính đơn điệu của hàm chứa dấu trị tuyệt đối có đáp án 2023

Phương pháp giải Tính đơn điệu của hàm số 2023 (lý thuyết và bài tập)

Xét tính đơn điệu của hàm số hợp có chứa tham số

Tính đồng biến, nghịch biến của hàm hợp thông qua bàng biến thiên và đồ thị

Leave a Comment Hủy

Mục lục

  1. 50 Bài tập Sự đồng biến nghịch biến của hàm số (có đáp án)- Toán 12
  2. Chuyên đề Tính đơn điệu của hàm số 2023 hay, chọn lọc
  3. 43 câu Trắc nghiệm Sự đồng biến, nghịch biến của hàm số có đáp án 2023 – Toán 12
  4. 264 bài tập trắc nghiệm chuyên đề chiều biến thiên của hàm số năm 2023
  5. 60 bài tập về Tính đơn điệu của hàm chứa dấu trị tuyệt đối có đáp án 2023
  6. Phương pháp giải Tính đơn điệu của hàm số 2023 (lý thuyết và bài tập)
  7. Xét tính đơn điệu của hàm số hợp có chứa tham số
  8. Tính đồng biến, nghịch biến của hàm hợp thông qua bàng biến thiên và đồ thị
  9. Tìm tham số M đề hàm số phân thức đồng biến, nghịch biến trên khoảng xác định
  10. Tìm tham số M để hàm số bậc ba đồng biến, nghịch biến trên R
  11. Tìm tham số M để hàm số bậc ba đồng biến, nghịch biến trên khoảng K cho trước
  12. Tìm khoảng đồng biến, nghịch biến bằng bảng biến thiên và đồ thị hàm số
  13. Dạng bài tập Tìm tham số m để hàm số đơn điệu trên tập xác định
  14. Dạng bài tập Tìm khoảng đồng biến và nghịch biến của hàm số
  15. 45 bài tập trắc nghiệm Tính đơn điệu của hàm số lớp 12 có đáp án 2023
  16. SBT Toán 12 Bài 1: Sự đồng biến, nghịch biến của hàm số | Giải SBT Toán lớp 12
  17. Giải Toán 12 Bài 1: Sự đồng biến, nghịch biến của hàm số
  18. 50 Bài tập Cực trị của hàm số (có đáp án)- Toán 12
  19. Phương pháp giải Cực trị của hàm số 2023 (lý thuyết và bài tập)
  20. 50 câu Trắc nghiệm Cực trị của hàm số có đáp án 2023 – Toán 12
  21. 50 bài tập trắc nghiệm cực trị hàm hợp có đáp án và lời giải chi tiết 2023
  22. 116 câu Trắc nghiệm Vận dụng – Vận dụng cao cực trị hàm chứa dấu giá trị tuyệt đối 2023
  23. Phương pháp giải Giá trị lớn nhất, giá trị nhỏ nhất của hàm số 2023 (lý thuyết và bài tập)
  24. Chuyên đề cực trị của hàm số
  25. Tìm M để đồ thị hàm số đạt cực trị tại các điểm A,B thỏa mãn điều kiện cho trước
  26. Cực trị hàm số, hàm số y=f(|x|)
  27. Cực trị hàm số trị tuyệt đối
  28. Dạng bài tập Cực trị có tham số
  29. Dạng bài tập Chứng minh về cực trị
  30. Giải Toán 12 Bài 2: Cực trị của hàm số
  31. 50 Bài tập Giá trị lớn nhất và giá trị nhỏ nhất của hàm số (có đáp án)- Toán 12
  32. Chuyên đề Giá trị lớn nhất, giá trị nhỏ nhất của hàm số 2022 hay, chọn lọc
  33. 50 Bài tập trắc nghiệm về GTLN – GTNN của hàm số chứa dấu giá trị tuyệt đối 2023
  34. Phương pháp giải về Giá trị lớn nhất, giá trị nhỏ nhất của hàm số 2023 (lý thuyết và bài tập)
  35. Chuyên đề Giá trị lớn nhất, giá trị nhỏ nhất – Ôn thi THPT Quốc gia
  36. Phương pháp giải Giá trị lớn nhất và nhỏ nhất của hàm số chứa dấu giá trị tuyệt đối 2023 (lý thuyết và bài tập)
  37. Bài toán tìm giá trị nhỏ nhất, giá trị lớn nhất có chứa tham số
  38. 29 câu Trắc nghiệm Giá trị lớn nhất, giá trị nhỏ nhất của hàm số có đáp án 2023 – Toán 12
  39. Dạng bài tập Ứng dụng thực tế của bài toán Min, Max có đáp án
  40. Giải Toán 12 Bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
  41. 50 Bài tập Đường tiệm cận (có đáp án)- Toán 12
  42. Các dạng bài tập trắc nghiệm về VDC đường tiệm cận của đồ thị hàm số
  43. 241 bài toán trắc nghiệm tiệm cận chứa tham số 2023
  44. Đường tiệm cận của đồ thị hàm số 2023 (lý thuyết và bài tập)
  45. Chuyên đề đường tiệm cận của đồ thị hàm số
  46. Tìm tham số M để đồ thị hàm số có tiệm cận
  47. Giải Toán 12 Bài 4: Đường tiệm cận
  48. 50 Bài tập Khảo sát sự biến thiên và vẽ đồ thị hàm số (có đáp án)- Toán 12
  49. Phương pháp giải Sự tương giao giữa hai đồ thị hàm số 2023 (lý thuyết và bài tập)
  50. Các dạng bài tâp về Đồ thị hàm số có đáp án
  51. Đồ thị hàm số chứa dấu giá trị tuyệt đối
  52. Khảo sát và vẽ đồ thị hàm hữu tỉ bậc nhất trên bậc nhất

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán