Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 12

50 Bài tập Bất phương trình mũ và bất phương trình lôgarit (có đáp án)- Toán 12

By admin 07/10/2023 0

Bài tập Toán 12 Chương 2 Bài 6: Bất phương trình mũ và bất phương trình lôgarit

A. Bài tập Bất phương trình mũ và bất phương trình lôgarit

I. Bài tập trắc nghiệm

Bài 1: Giải bất phương trình

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

A. x < -6 hoặc x > 2    

C. x < -2 hoặc x > 6

B. -6 < x < 2    

D. -2 < x < 6

Lời giải:

(13)x2 – 4x + 12 > 1

⇔ x2 – 2x – 12 < 0 (vì (13) < 1)

⇔ -2 < x < 6

Bài 2: Giải bất phương trình 2.4x + 1 < 162x

A. x > 1    

B. x < 1   

C. x > 12    

D. x < 12

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 3: Giải bất phương trình 2x.3x ≤ 36

A. x ≤ 2    

B. x ≤ 3    

C. x ≤ 6    

D. x ≤ 4

Lời giải:

2x.3x ≤ 36 ⇔ 6x ≤ 62 ⇔ x ≤ 2

Bài 4: Giải bất phương trình 7.3x + 1 + 5x + 3 ≤ 3x + 4 + 5x + 2

A. x ≤ -1   

B. x ≥ -1    

C. x ≤ 0    

D. x ≥ 0

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 5: Tìm tập nghiệm của bất phương trình

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

A. (-1; 1)   

C. (-∞; -1) ∪ (-1; 1)

B. (-1; -1) ∪ (1; +∞)    

D. (-∞; -2) ∪ (1; +∞)

Lời giải:

Nhận thấy (5 + 2)(5 – 2) = 1 hay 5 – 2 = (5 + 2)-1 nên bất phương trình đã cho tương đương với

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Tập nghiệm là (-2; -1) ∪ (1; +∞)

Bài 6: Tìm tập nghiệm của bất phương trình

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

A. (-∞; -1) ∪ (7; +∞)   

B. (-1; 7)

C. (7; +∞)

D. (-7; 1)

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

⇔ 6x + 10 – x2 > 3 ⇔ x2 – 6x – 7 < 0 ⇔ -1 < x < 7.

Chọn đáp án C

Bài 7: Giải bất phương trình

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Nhận xét rằng (7 + 43)(7 – 43) = 1 hay 7 – 43 = (7 + 43)-1

Do đó bất phương trình đã cho tương đương với

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn đáp án A.

Bài 8: Giải bất phương trình 32x – 1 < 113 – x

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Lấy lôgarit theo cơ số 3 hai vế của bất phương trình , ta được :

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn đáp án D.

Bài 9: Giải bất phương trình 2016x + 20161 – x ≤ 2017

A. 1 ≤ x ≤ 2016   

C. x ≤ 1 hoặc x ≥ 2016

B. 0 ≤ x ≤ 1    

D. x ≤ 0 hoặc x ≥ 1

Lời giải:

Ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn đáp án B

Bài 10: Tìm tập nghiệm của bất phương trình log15(x2 + 4x) ≥ -1

A. ∅    

B. [-5; 1]   

C. (-∞; -5] ∪ [1; +∞)

D. [-5; -4) ∪ (0; 1]

Lời giải:

Bất phương trình đã cho tương đương với

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn đáp án D.

II. Bài tập tự luận có lời giải

Bài 1: Tìm tập nghiệm của bất phương trình log(x – 21) < 2 – logx

Lời giải:

Điều kiện x > 21. Khi đó:

log(x – 21) < 2 – logx ⇔ log(x – 21) + logx < 2

⇒ log[x(x – 21)] < 2 ⇒ x(x – 21) < 102

⇔ x2 – 21x – 100 < 0

⇔ -4 < x < 25

Kết hợp điều kiện x > 21, ta được 21 < x < 25.

Nhận xét. Nhiều bài toán quen thuộc như tìm miền xác định của hàm số, xét tính đơn điệu, cực trị,… có thể dẫn đến việc phải giải các bất phương trình mũ, lôgarit. Dưới đây là một số ví dụ.

Bài 2: Tìm miền xác định của hàm số

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Hàm số xác định khi

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 3: Tìm các khoảng đồng biến của hàm số y = x2lnx

Lời giải:

Tập xác định: D = (0; +∞)

y’ = 2xlnx + x2.1x = x(2lns + 1).

Ta thấy:

y’ > 0 ⇔ x(2lnx + 1) > 0 ⇔ 2lnx + 1 > 0 (vì x > 0)

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Từ đó khoảng đồng biến của hàm số là

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 4: Một tàu vũ trụ được cung cấp bởi một nguồn điện đồng vị phóng xạ plutoni-238. Công suất đầu ra của nguồn điện này được ước lượng bởi

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

trong đó t là số năm kể từ khi con tàu hoạt động. Biết rằng để các thiết bị trên tàu hoạt động bình thường, nguồn cần cung cấp công suất tối thiểu là 600W. Hỏi con tàu đủ điện để các thiết bị hoạt động bình thường trong thời gian bao lâu ?

Lời giải:

Con tàu hoạt động bình thường khi

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 5: Dân số Việt Nam năm 2015 là 91,71 triệu người. Giả sử trong 5 năm tỉ lệ tăng dân số là không đổi. Hỏi tỉ lệ này có thể nhận giá trị tối đa là bao nhiêu để dân số Việt Nam năm 2020 không vượt quá 96,5 triệu người (làm tròn kết quả đến phần chục nghìn) ?

Lời giải:

Giả sử tỉ lệ tăng dân số trong 5 năm đó từ 2015 đến 2020 là k không đổi. Điều kiện của đầu bài là :

91,71.e5k ≤ 96,5

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy tỉ lệ tăng dân số tối đa là 1,02%.

Bài 6: Giá trị của một chiếc xe ô tô sau t năm được ước lượng bằng công thức G(t) = 600e-0,12t (triệu đồng). Để bán lại xe với giá trừ 200 triệu đến 300 triệu đồng, người chủ phải bán trong khoảng thời gian nào kể từ khi mua (làm tròn kết quả đến hàng phần mười của năm)?

Lời giải:

Yêu cầu đề bài : 200 ≤ 600e-0,12t ≤ 300

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 7: Giải bất phương trình

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 8: Tìm tập nghiệm của bất phương trình

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 9: Miền xác định của hàm số y = log2004(log2003(log2002(log2001x))) là khoảng (c; +∞) . Xác định giá trị của c.

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 10: Có bao nhiêu số nguyên dương n thỏa mãn điều kiện (130n)50 > n100 > 2200 ?

Lời giải:

Lấy căn bậc 50 mỗi vế của bất phương trình ta nhận được

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Từ đó có 125 số nguyên dương n thỏa mãn điều kiện đã cho

Bài 11: Giải bất phương trình 54x – 6 > 33x – 4

Lời giải:

Lấy lôgarit theo cơ số 5 hai vế của bất phương trình, ta được :

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

III. Bài tập vận dụng

Bài 1 Giải bất phương trình log5(2x – 4) < log5(x + 3)

Bài 2 Giải bất phương trình ln(xx – 2x – 2) < 0

Bài 3 Giải bất phương trình Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 4 Giải bất phương trình logx + log(x + 9) > 11

Bài 5 Giải bất phương trình 3log2(x2 – 3x + 2) > 3

Bài 6 Tìm miền xác định của hàm số y = ln(lnx)

Bài 7 Tìm khoảng đồng biến của hàm số y = xlnx

Bài 8 Một vệ tinh cần một nguồn điện có công suất 7W (oát) để hoạt động hết công năng. Nó được cung cấp bởi một nguồn điện đồng vị phóng xạ có công suất đầu ra P xác định bởi công thức

Bài 9 Giải bất phương trình 2x.3x ≤ 36

Bài 10 Giải bất phương trình Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 

B. Lý thuyết Bất phương trình mũ và bất phương trình lôgarit

I. Bất phương trình mũ.

1. Bất phương trình mũ cơ bản

Bất phương trình mũ cơ bản có dạng ax > b ( hoặc ax < b; ax≥b; ax≤b) với a > 0 và a ≠ 1.

Ta xét bất phương trình ax > b

+ Nếu b ≤ 0 tập nghiệm của bất phương trình là  vì ax > 0≥b  ;  ∀x∈ℝ

+ Nếu b > 0 thì tập nghiệm của bất phương trình tương đương ax  > alogab.

Với a > 1, tập nghiệm của bất phương trình là x > logab.

Với 0 <  a < 1, tập nghiệm của bất phương trình là x < logab.

– Ví dụ 1.

a) 5x  >  125⇔x > log5125⇔x >  3.

b) 13x  >27⇔x<log1327⇔x <  −3

Kết luận. Tập nghiệm của bất phương trình ax > b được cho trong bảng sau:

Lý thuyết Bất phương trình mũ và bất phương trình logarit chi tiết – Toán lớp 12 (ảnh 1)

2. Bất phương trình mũ đơn giản

– Ví dụ 2. Giải bất phương trình 3x + 2 < 27.

Lời giải:

Ta có: 27 = 33

Vì cơ số 3 > 1 nên x + 2 < 3

⇔x < 1.

Vậy tập nghiệm của bất phương trình đã cho là x < 1.

II. Bất phương trình logarit

1. Bất phương trình logarit cơ bản

Bất phương trình logarit cơ bản có dạng loga x > b (hoặc logax < 0; logax≤0;  logax ≥0) với a > 0; a ≠ 1.

Xét bất phương trình logax > b

+ Trường hợp a > 1 ta có: logax > b⇔x > ab.

+ Trường hợp 0 < a < 1 ta có: logax > b⇔0 < x < ab.

– Ví dụ 3.

a) log2x > 7⇔x > 27.

b) log25x  <  3 ⇔x​  >  253

Kết luận: Nghiệm của bất phương trình logax > b được cho trong bảng sau:

Lý thuyết Bất phương trình mũ và bất phương trình logarit chi tiết – Toán lớp 12 (ảnh 1)

2. Bất phương trình logarit đơn giản

– Ví dụ 4. Giải bất phương trình log3(x2+​2x)>​  log3(x+2).

Lời giải:

Lý thuyết Bất phương trình mũ và bất phương trình logarit chi tiết – Toán lớp 12 (ảnh 1)

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

SBT Kinh tế Pháp luật 10 Bài 20 (Cánh diều): Hệ thống pháp luật Việt Nam

Next post

20 câu Trắc nghiệm Kinh tế pháp luật 10 Bài 21 (Cánh diều) có đáp án 2023: Thực hiện pháp luật

Bài liên quan:

50 Bài tập Sự đồng biến nghịch biến của hàm số (có đáp án)- Toán 12

Chuyên đề Tính đơn điệu của hàm số 2023 hay, chọn lọc

43 câu Trắc nghiệm Sự đồng biến, nghịch biến của hàm số có đáp án 2023 – Toán 12

264 bài tập trắc nghiệm chuyên đề chiều biến thiên của hàm số năm 2023

60 bài tập về Tính đơn điệu của hàm chứa dấu trị tuyệt đối có đáp án 2023

Phương pháp giải Tính đơn điệu của hàm số 2023 (lý thuyết và bài tập)

Xét tính đơn điệu của hàm số hợp có chứa tham số

Tính đồng biến, nghịch biến của hàm hợp thông qua bàng biến thiên và đồ thị

Leave a Comment Hủy

Mục lục

  1. 50 Bài tập Sự đồng biến nghịch biến của hàm số (có đáp án)- Toán 12
  2. Chuyên đề Tính đơn điệu của hàm số 2023 hay, chọn lọc
  3. 43 câu Trắc nghiệm Sự đồng biến, nghịch biến của hàm số có đáp án 2023 – Toán 12
  4. 264 bài tập trắc nghiệm chuyên đề chiều biến thiên của hàm số năm 2023
  5. 60 bài tập về Tính đơn điệu của hàm chứa dấu trị tuyệt đối có đáp án 2023
  6. Phương pháp giải Tính đơn điệu của hàm số 2023 (lý thuyết và bài tập)
  7. Xét tính đơn điệu của hàm số hợp có chứa tham số
  8. Tính đồng biến, nghịch biến của hàm hợp thông qua bàng biến thiên và đồ thị
  9. Tìm tham số M đề hàm số phân thức đồng biến, nghịch biến trên khoảng xác định
  10. Tìm tham số M để hàm số bậc ba đồng biến, nghịch biến trên R
  11. Tìm tham số M để hàm số bậc ba đồng biến, nghịch biến trên khoảng K cho trước
  12. Tìm khoảng đồng biến, nghịch biến bằng bảng biến thiên và đồ thị hàm số
  13. Dạng bài tập Tìm tham số m để hàm số đơn điệu trên tập xác định
  14. Dạng bài tập Tìm khoảng đồng biến và nghịch biến của hàm số
  15. 45 bài tập trắc nghiệm Tính đơn điệu của hàm số lớp 12 có đáp án 2023
  16. SBT Toán 12 Bài 1: Sự đồng biến, nghịch biến của hàm số | Giải SBT Toán lớp 12
  17. Giải Toán 12 Bài 1: Sự đồng biến, nghịch biến của hàm số
  18. 50 Bài tập Cực trị của hàm số (có đáp án)- Toán 12
  19. Phương pháp giải Cực trị của hàm số 2023 (lý thuyết và bài tập)
  20. 50 câu Trắc nghiệm Cực trị của hàm số có đáp án 2023 – Toán 12
  21. 50 bài tập trắc nghiệm cực trị hàm hợp có đáp án và lời giải chi tiết 2023
  22. 116 câu Trắc nghiệm Vận dụng – Vận dụng cao cực trị hàm chứa dấu giá trị tuyệt đối 2023
  23. Phương pháp giải Giá trị lớn nhất, giá trị nhỏ nhất của hàm số 2023 (lý thuyết và bài tập)
  24. Chuyên đề cực trị của hàm số
  25. Tìm M để đồ thị hàm số đạt cực trị tại các điểm A,B thỏa mãn điều kiện cho trước
  26. Cực trị hàm số, hàm số y=f(|x|)
  27. Cực trị hàm số trị tuyệt đối
  28. Dạng bài tập Cực trị có tham số
  29. Dạng bài tập Chứng minh về cực trị
  30. Giải Toán 12 Bài 2: Cực trị của hàm số
  31. 50 Bài tập Giá trị lớn nhất và giá trị nhỏ nhất của hàm số (có đáp án)- Toán 12
  32. Chuyên đề Giá trị lớn nhất, giá trị nhỏ nhất của hàm số 2022 hay, chọn lọc
  33. 50 Bài tập trắc nghiệm về GTLN – GTNN của hàm số chứa dấu giá trị tuyệt đối 2023
  34. Phương pháp giải về Giá trị lớn nhất, giá trị nhỏ nhất của hàm số 2023 (lý thuyết và bài tập)
  35. Chuyên đề Giá trị lớn nhất, giá trị nhỏ nhất – Ôn thi THPT Quốc gia
  36. Phương pháp giải Giá trị lớn nhất và nhỏ nhất của hàm số chứa dấu giá trị tuyệt đối 2023 (lý thuyết và bài tập)
  37. Bài toán tìm giá trị nhỏ nhất, giá trị lớn nhất có chứa tham số
  38. 29 câu Trắc nghiệm Giá trị lớn nhất, giá trị nhỏ nhất của hàm số có đáp án 2023 – Toán 12
  39. Dạng bài tập Ứng dụng thực tế của bài toán Min, Max có đáp án
  40. Giải Toán 12 Bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
  41. 50 Bài tập Đường tiệm cận (có đáp án)- Toán 12
  42. Các dạng bài tập trắc nghiệm về VDC đường tiệm cận của đồ thị hàm số
  43. 241 bài toán trắc nghiệm tiệm cận chứa tham số 2023
  44. Phương pháp giải Tiệm cận của đồ thị hàm số 2023 (lý thuyết và bài tập)
  45. Đường tiệm cận của đồ thị hàm số 2023 (lý thuyết và bài tập)
  46. Chuyên đề đường tiệm cận của đồ thị hàm số
  47. Tìm tham số M để đồ thị hàm số có tiệm cận
  48. Giải Toán 12 Bài 4: Đường tiệm cận
  49. 50 Bài tập Khảo sát sự biến thiên và vẽ đồ thị hàm số (có đáp án)- Toán 12
  50. Phương pháp giải Sự tương giao giữa hai đồ thị hàm số 2023 (lý thuyết và bài tập)
  51. Các dạng bài tâp về Đồ thị hàm số có đáp án
  52. Đồ thị hàm số chứa dấu giá trị tuyệt đối

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán