Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 12

50 Bài tập Nguyên hàm (có đáp án)- Toán 12

By admin 07/10/2023 0

Bài tập Toán 12 Chương 3 Bài 1: Nguyên hàm

A. Bài tập Nguyên hàm

I. Bài tập trắc nghiệm

Bài 1:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Đặt u = ex + 1 ⇒ u’ = ex. Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 2: Trong các hàm số sau hàm số nào không phải là một nguyên hàm của f(x) = cosxsinx ?

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Cách 1.

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Cách 2. Sử dụng phương pháp biến đổi số ta có:

Đặt u = cosx thì u’ = -sinx và ∫sinxcosxdx = -∫u.u’dx = -∫udu

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy chọn đáp án D.

Bài 3: Tìm I=∫(3x2 – x + 1)exdx

A. I = (3x2 – 7x +8)ex + C    

B. I = (3x2 – 7x)ex + C

C. I = (3x2 – 7x +8) + ex + C    

D. I = (3x2 – 7x + 3)ex + C

Lời giải:

Sử dụng phương pháp tính nguyên hàm từng phần ta có:

Đặt u = 3x2 – x + 1 và dv = exdx ta có du = (6x – 1)dx và v = ex . Do đó:

∫(3x2 – x + 1)exdx = (3x2 – x + 1)ex – ∫(6x – 1)exdx

Đặt u1 = 6x – 1; dv1 = exdx Ta có: du1 = 6dx và v1 = ex .

Do đó ∫(6x – 1)exdx = (6x – 1)ex – 6∫exdx = (6x – 1)ex – 6ex + C

Từ đó suy ra

∫(3x2 – x + 1)exdx = (3x2 – x + 1)ex – (6x – 7)ex + C = (3x2 – 7x + 8)ex + C

Vậy chọn đáp án A.

Bài 4:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy chọn đáp án C.

Bài 5: Một vật chuyển động với vận tốc v(t) (m/s) có gia tốc

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vận tốc ban đầu của vật là 6m/s. Vận tốc của vật sau 10 giây xấp xỉ bằng

A. 10m/s   

B. 11m/s   

C. 12m/s   

D. 13m/s.

Lời giải:

Vận tốc của vật bằng

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

với t = 0 ta có v(0)= C = 6 nên phương trình vận tốc của chuyển động là :

v(t) = 3ln(t + 1) + 6 (m/s)

khi đó v(10) = 3ln11 + 6 ≈ 13 (m/s) .

Vậy chọn đáp án D.

Bài 6: Tìm I = ∫cos(4x + 3)dx .

A. I = sin(4x + 2) + C    

B. I = – sin(4x + 3) + C

C. I = (14).sin(4x + 3) + C   

D. I = 4sin(4x + 3) + C

Lời giải:

Đặt u = 4x + 3

⇒ du = 4dx ⇒ dx = 14 du và cos(4x+3)dx được viết thành

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 7: Trong các mệnh đề sau mệnh đề nào nhận giá trị đúng?

A. Hàm số y = 1x có nguyên hàm trên (-∞; +∞).

B. 3x2 là một số nguyên hàm của x3 trên (-∞; +∞).

C. Hàm số y = |x| có nguyên hàm trên (-∞;+∞).

D. 1x + C là họ nguyên hàm của ln⁡x trên (0;+∞).

Lời giải:

Dựa vào định lí: Mọi hàm số liên tục trên K đều có nguyên

hàm trên K. Vì y = |x| liên tục trên R nên có nguyên hàm trên R .

Phương án A sai vì y=1x không xác định tại x=0 ∈ (-∞;+∞).

Phương án B sai vì 3x2 là đạo hàm của x3.

Phương án D sai vì 1x là đạo hàm của ln⁡x trên (0; +∞).

Vậy chọn đáp án C.

Bài 8: Hàm số nào dưới đây không phải là một nguyên hàm của f(x)=2x-sin⁡2x ?

x2 + (12).cos⁡2x    

B. x2 + cos2 x    

C. x2 – sin2x    

D. x2 + cos⁡2x .

Lời giải:

Ta có

   ∫(2x-sin⁡2x)dx=2∫xdx-∫sin⁡2xdx

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

D không phải là nguyên hàm của f(x). Vậy chọn đáp án D.

Bài 9: Tìm nguyên hàm của

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

 Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Với x ∈ (0; +∞) ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy chọn đáp án C.

Bài 10:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

 Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy chọn đáp án B.

Ghi chú. Yêu cầu tìm nguyên hàm của một hàm số được hiểu là tìm nguyên hàm trên từng khoảng xác định của nó.

II. Bài tập tự luận có lời giải

Bài 1: Tìm I = ∫x.e3xdx

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 2: Hàm số nào sau đây không phải là một nguyên hàm của: Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 3: Họ nguyên hàm của hàm số

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 4: Họ nguyên hàm của hàm số

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 5: Hàm số nào dưới đây không là nguyên hàm của

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 6: Họ nguyên hàm của hàm số f(x) = (2 tanx + cotx)2 là:

Lời giải:

∫(2tanx + cotx)2dx = ∫(4tan2x + 2tanx.cotx + cot2x)dx

= ∫ [4(tan2x + 1) + (cot2x + 1) – 1]dx

= 4tanx = cotx – x + C

Bài 7: Biết rằng: f'(x) = ax + bx2, f(-1) = 2, f(1) = 4, f'(1) = 0. Giá trị biểu thức ab bằng?

Lời giải:

Ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Từ điều kiện đã cho ta có phương trình sau:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 8: Cho các hàm số:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

với x > 32. Để F(x) là một nguyên hàm của f(x) thì giá trị của a,b,c lần lượt là:

Lời giải:

Ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 9: Một đám vi khuẩn tại ngày thứ t có số lượng là N(t). Biết rằng

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

và lúc đầu đám vi khuẩn có 250000 con. Sau 10 ngày số lượng vi khuẩn xấp xỉ bằng:

Lời giải:

Số lượng vi khuẩn tại ngày thứ t bằng

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Với t = 0 ta có: N(0) = 250000,

Vậy N(t) = 8000.ln(1 + 0,5t) + 250000

khi đó N(10) ≈ 264334.

Bài 10: Tìm I = ∫sin5xcosxdx .

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

III. Bài tập vận dụng

Bài 1 Tìm nguyên hàm của hàm số f(x) = 22x.3x.7x .

Bài 2 Hàm số nào dưới đây không phải là một nguyên hàm của f(x)=2x-sin⁡2x ?

Bài 3 Trong các hàm số sau hàm số nào không phải là một nguyên hàm của f(x) = cosxsinx ?

Bài 4 Tìm I=∫(3x2 – x + 1)exdx

Bài 5 Một vật chuyển động với vận tốc v(t) (m/s) có gia tốc Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 6 Tìm I = ∫cos(4x + 3)dx .

Bài 7 Tìm I = ∫x.e3xdx

Bài 8 Tìm I = ∫sin5xcosxdx .

Bài 9 Tìm nguyên hàm của hàm số f(x) = 22x.3x.7x .

B. Lý thuyết Nguyên hàm

I. Nguyên hàm và tính chất

1. Nguyên hàm.

– Định nghĩa

Cho hàm số f(x) xác định trên K (K là khoảng, đoạn hay nửa khoảng của R). 

Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu F’(x) = f(x) với mọi x∈K.

Ví dụ 1.

– Hàm số F(x) = sinx + 6 là một nguyên hàm của hàm số f(x) = cosx trên khoảng − ∞;  + ∞ vì F’(x) = (sinx + 6)’ = cosx với ∀x ∈− ∞;  + ∞

– Hàm số F(x)= x+ ​2x−3 là một nguyên hàm của hàm số f(x)=  −5(x−3)2 trên khoảng (−∞;  3) ∪(3; +​ ∞)

Vì F‘(x)= x+ ​2x−3 ‘=−5(x−3)2=f(x) với ∀x∈(−∞;3)∪(3;+∞).

– Định lí 1.

 Nếu F(x) là một nguyên hàm của f(x) trên K thì với mỗi hằng số C, hàm số G(x) = F(x) + C cũng là một nguyên hàm của f(x) trên K.

– Định lí 2.

Nếu F(x) là một nguyên hàm của hàm số f(x) trên K thì mọi nguyên hàm của f(x) trên K đều có dạng F(x) + C, với C là một hằng số.

Do đó F(x)+C;  C∈ℝ là họ tất cả các nguyên hàm của f(x) trên K.

Kí hiệu: ∫f(x)dx=F(x)+C

– Chú ý: Biểu thức f(x)dx chính là vi phân của nguyên hàm F(x) của f(x), vì dF(x) = F’(x)dx = f(x)dx.

Ví dụ 2.

Lý thuyết Nguyên hàm chi tiết – Toán lớp 12 (ảnh 1)

2. Tính chất của nguyên hàm

– Tính chất 1.

∫f‘(x)dx  =  f(x)​  +  C

Ví dụ 3.

∫(​4x)‘dx  =∫4x.ln4.dx=4x+C

– Tính chất 2.

∫kf(x)​dx  =  k.∫f(x)​dx(k là hằng số khác 0).

– Tính chất 3.

∫f(x)  ± g(x)dx=   ∫f(x)  dx  ±∫g(x)  dx

Ví dụ 4. Tìm nguyên hàm của hàm số f(x)  =  3x2  +​  2sinx trên khoảng − ∞;  +​ ∞.

Lời giải:

Với x∈− ∞;  +​ ∞ ta có:

∫(3x2  + 2sinx)dx=∫3x2dx  +  2∫sinxdx =  x3+​ 2.(−cosx) +​  C =   x3−2cosx +​  C

3. Sự tồn tại nguyên hàm

Định lí:

Mọi hàm số f(x) liên tục trên K đều có nguyên hàm trên K.

Ví dụ 5.

a) Hàm số y=  x có nguyên hàm trên khoảng 0;  + ∞.

∫xdx =  ∫x12dx=  23x32 +  C  =  23xx  +​  C

b) Hàm số y = 1x có nguyên hàm trên khoảng −∞;  0  ∪0;  + ∞

∫1xdx  =  lnx  +​  C

4. Bảng nguyên hàm của một số hàm số thường gặp

Lý thuyết Nguyên hàm chi tiết – Toán lớp 12 (ảnh 1)

Ví dụ 6. Tính:

Lý thuyết Nguyên hàm chi tiết – Toán lớp 12 (ảnh 1)

Lời giải:

Lý thuyết Nguyên hàm chi tiết – Toán lớp 12 (ảnh 1)

– Chú ý: Từ đây, yêu cầu tìm nguyên hàm của một hàm số được hiểu là tìm nguyên hàm trên từng khoảng xác định của nó.

II. Phương pháp tính nguyên hàm.

1. Phương pháp đổi biến số

– Định lí 1.

Nếu ∫f(u)du=  F(u)  +​  C và u = u(x) là hàm số có đạo hàm liên tục thì:

∫f(u(x)). u‘(x)dx=  F(u(x))  +​  C

Hệ quả: Nếu u = ax + b (a ≠ 0), ta có:

∫f(ax+ ​b)dx  =  1aF(ax+​ b)+​ C

Ví dụ 7. Tính ∫(3x+ ​2)3dx.

Lời giải:

Ta có: ∫u3du =  u44  +​ C nên theo hệ quả ta có:

∫(3x+ ​2)3dx  =  (3x+2)44  +​  C

Chú ý:

Nếu tính nguyên hàm theo biến mới u (u = u(x)) thì sau khi tính nguyên hàm, ta phải trở lại biến x ban đầu bằng cách thay u bởi u(x).

Ví dụ 8. Tính ∫sinx.cos2xdx

Lời giải:

Lý thuyết Nguyên hàm chi tiết – Toán lớp 12 (ảnh 1)

2. Phương pháp tính nguyên hàm từng phần.

– Định lí 2.

Nếu hai hàm số u = u(x) và v = v(x) có đạo hàm liên tục trên K thì:

∫u(x). v‘(x).dx  =u(x).v(x)−  ∫u‘(x).v(x)dx

– Chú ý.

Vì u’(x) dx = du; v’(x) dx = dv. Nên đẳng thức trên còn được viết ở dạng:

∫udv  = uv−  ∫vdu

Đó là công thức nguyên hàm từng phần.

Ví dụ 9. Tính

Lý thuyết Nguyên hàm chi tiết – Toán lớp 12 (ảnh 1)

Lời giải:

Lý thuyết Nguyên hàm chi tiết – Toán lớp 12 (ảnh 1)

Lý thuyết Nguyên hàm chi tiết – Toán lớp 12 (ảnh 1)

Xem thêm

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Bộ 10 đề thi giữa kì 1 Kinh tế Pháp luật 10 Cánh diều có đáp án năm 2023

Next post

20 câu Trắc nghiệm Dao động điều hoà (Kết nối tri thức 2023) có đáp án – Vật lí lớp 11

Bài liên quan:

50 Bài tập Sự đồng biến nghịch biến của hàm số (có đáp án)- Toán 12

Chuyên đề Tính đơn điệu của hàm số 2023 hay, chọn lọc

43 câu Trắc nghiệm Sự đồng biến, nghịch biến của hàm số có đáp án 2023 – Toán 12

264 bài tập trắc nghiệm chuyên đề chiều biến thiên của hàm số năm 2023

60 bài tập về Tính đơn điệu của hàm chứa dấu trị tuyệt đối có đáp án 2023

Phương pháp giải Tính đơn điệu của hàm số 2023 (lý thuyết và bài tập)

Xét tính đơn điệu của hàm số hợp có chứa tham số

Tính đồng biến, nghịch biến của hàm hợp thông qua bàng biến thiên và đồ thị

Leave a Comment Hủy

Mục lục

  1. 50 Bài tập Sự đồng biến nghịch biến của hàm số (có đáp án)- Toán 12
  2. Chuyên đề Tính đơn điệu của hàm số 2023 hay, chọn lọc
  3. 43 câu Trắc nghiệm Sự đồng biến, nghịch biến của hàm số có đáp án 2023 – Toán 12
  4. 264 bài tập trắc nghiệm chuyên đề chiều biến thiên của hàm số năm 2023
  5. 60 bài tập về Tính đơn điệu của hàm chứa dấu trị tuyệt đối có đáp án 2023
  6. Phương pháp giải Tính đơn điệu của hàm số 2023 (lý thuyết và bài tập)
  7. Xét tính đơn điệu của hàm số hợp có chứa tham số
  8. Tính đồng biến, nghịch biến của hàm hợp thông qua bàng biến thiên và đồ thị
  9. Tìm tham số M đề hàm số phân thức đồng biến, nghịch biến trên khoảng xác định
  10. Tìm tham số M để hàm số bậc ba đồng biến, nghịch biến trên R
  11. Tìm tham số M để hàm số bậc ba đồng biến, nghịch biến trên khoảng K cho trước
  12. Tìm khoảng đồng biến, nghịch biến bằng bảng biến thiên và đồ thị hàm số
  13. Dạng bài tập Tìm tham số m để hàm số đơn điệu trên tập xác định
  14. Dạng bài tập Tìm khoảng đồng biến và nghịch biến của hàm số
  15. 45 bài tập trắc nghiệm Tính đơn điệu của hàm số lớp 12 có đáp án 2023
  16. SBT Toán 12 Bài 1: Sự đồng biến, nghịch biến của hàm số | Giải SBT Toán lớp 12
  17. Giải Toán 12 Bài 1: Sự đồng biến, nghịch biến của hàm số
  18. 50 Bài tập Cực trị của hàm số (có đáp án)- Toán 12
  19. Phương pháp giải Cực trị của hàm số 2023 (lý thuyết và bài tập)
  20. 50 câu Trắc nghiệm Cực trị của hàm số có đáp án 2023 – Toán 12
  21. 50 bài tập trắc nghiệm cực trị hàm hợp có đáp án và lời giải chi tiết 2023
  22. 116 câu Trắc nghiệm Vận dụng – Vận dụng cao cực trị hàm chứa dấu giá trị tuyệt đối 2023
  23. Phương pháp giải Giá trị lớn nhất, giá trị nhỏ nhất của hàm số 2023 (lý thuyết và bài tập)
  24. Chuyên đề cực trị của hàm số
  25. Tìm M để đồ thị hàm số đạt cực trị tại các điểm A,B thỏa mãn điều kiện cho trước
  26. Cực trị hàm số, hàm số y=f(|x|)
  27. Cực trị hàm số trị tuyệt đối
  28. Dạng bài tập Cực trị có tham số
  29. Dạng bài tập Chứng minh về cực trị
  30. Giải Toán 12 Bài 2: Cực trị của hàm số
  31. 50 Bài tập Giá trị lớn nhất và giá trị nhỏ nhất của hàm số (có đáp án)- Toán 12
  32. Chuyên đề Giá trị lớn nhất, giá trị nhỏ nhất của hàm số 2022 hay, chọn lọc
  33. 50 Bài tập trắc nghiệm về GTLN – GTNN của hàm số chứa dấu giá trị tuyệt đối 2023
  34. Phương pháp giải về Giá trị lớn nhất, giá trị nhỏ nhất của hàm số 2023 (lý thuyết và bài tập)
  35. Chuyên đề Giá trị lớn nhất, giá trị nhỏ nhất – Ôn thi THPT Quốc gia
  36. Phương pháp giải Giá trị lớn nhất và nhỏ nhất của hàm số chứa dấu giá trị tuyệt đối 2023 (lý thuyết và bài tập)
  37. Bài toán tìm giá trị nhỏ nhất, giá trị lớn nhất có chứa tham số
  38. 29 câu Trắc nghiệm Giá trị lớn nhất, giá trị nhỏ nhất của hàm số có đáp án 2023 – Toán 12
  39. Dạng bài tập Ứng dụng thực tế của bài toán Min, Max có đáp án
  40. Giải Toán 12 Bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
  41. 50 Bài tập Đường tiệm cận (có đáp án)- Toán 12
  42. Các dạng bài tập trắc nghiệm về VDC đường tiệm cận của đồ thị hàm số
  43. 241 bài toán trắc nghiệm tiệm cận chứa tham số 2023
  44. Phương pháp giải Tiệm cận của đồ thị hàm số 2023 (lý thuyết và bài tập)
  45. Đường tiệm cận của đồ thị hàm số 2023 (lý thuyết và bài tập)
  46. Chuyên đề đường tiệm cận của đồ thị hàm số
  47. Tìm tham số M để đồ thị hàm số có tiệm cận
  48. Giải Toán 12 Bài 4: Đường tiệm cận
  49. 50 Bài tập Khảo sát sự biến thiên và vẽ đồ thị hàm số (có đáp án)- Toán 12
  50. Phương pháp giải Sự tương giao giữa hai đồ thị hàm số 2023 (lý thuyết và bài tập)
  51. Các dạng bài tâp về Đồ thị hàm số có đáp án
  52. Đồ thị hàm số chứa dấu giá trị tuyệt đối

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán