Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 12

50 Bài tập Số phức (có đáp án) – Toán 12

By admin 07/10/2023 0

Bài tập Toán 12 Chương 4 Bài 1: Số phức

A. Bài tập Số phức

I. Bài tập trắc nghiệm

Bài 1: Môđun của số phức z = -3 + 4i là

A. 5   

B. -3   

C. 4   

D. 7

Lời giải:

Ta có: z = -3 + 4i

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 2: Môđun của số phức z = 2 – 3i là

A. 7    

B. 2 + 3   

C. 2 – 3   

D. 7

Lời giải:

Ta có: z = 2 – 3i

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 3: Số phức z = 1 – 2i có điểm biểu diễn là

A. M (1; 2)   

B. M (1; -2)   

C. M (-1; 2)   

D. M (-1; -2)

Lời giải:

Số phức z = 1 – 2i có điểm biểu diễn là M(1; -2).

Bài 4: Hai điểm biểu diễn hai số phức liên hợp z = 1 + i và z− = 1 – i đối xứng nhau qua

A. Trục tung   

B. Trục hoành   

C. Gốc tọa độ   

D. Điểm I (1; -1)

Lời giải:

Hai điểm biểu diễn của z = 1 + i và z− = 1 – i là M(1; 1) và N(1; -1) đối xứng với nhau qua trục Ox.

Bài 5: Tập hợp các điểm biểu diễn số phức z thỏa mãn |z| = 2 là

A. Hai đường thẳng   

B. Đường tròn bán kính bằng 2

C. Đường tròn bán kính bằng 4   

D. Hình tròn bán kính bằng 2.

Lời giải:

Gọi M là diểm biểu diễn của z. Ta có: |z| = 2 ⇔ OM = 2

Vậy quỹ tích của M là đường tròn tâm là gốc tọa độ O và bán kính R = 2.

Bài 6: Gọi A, B là các điểm biểu diễn của các số phức z1 = -1 + 2i, z2 = 2 + 3i . Khi đó, độ dài đoạn thẳng AB là

A. 26  

B. 5+13   

C. 10   

D. 10

Lời giải:

Ta có: A(-1;2), B(2,3). Do đó:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 7: Cho số phức z = 2 – 2i. Tìm khẳng định sai.

A. Phần thực của z là: 2.

B. Phần ảo của z là: -2.

C. Số phức liên hợp của z là z− = -2 + 2i.

D. Môđun của z là

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Số phức liên hợp của z là z− = 2 + 2i nên khẳng định C là sai.

Chọn đáp án C.

Bài 8: Cho số phức z = -1 + 3i. Phần thực, phần ảo của z− là

A. -1 và 3    

B. -1 và -3    

C. 1 và -3    

D. -1 và -3i.

Lời giải:

Ta có z = -1 + 3i => z− = -1 – 3i

Vậy phần thực và phần ảo của z− là -1 và -3.

Chọn đáp án B.

Bài 9: Môđun của số phức z thỏa mãn z− = 8 – 6i là

A. 2   

B. 10    

C. 14    

D. 27

Lời giải:

Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn đáp án B.

Bài 10: Tìm các số thực x, y sao cho (x – 2y) + (x + y + 4).i = (2x + y) + 2yi.

A. x = 3, y = 1    

B. x = 3, y = -1

C. x = -3, y = -1    

D. x = -3, y = 1

Lời giải:

Ta có (x – 2y) + (x + y + 4).i = (2x + y) + 2yi.

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy x = -3, y = 1.

Chọn đáp án D.

II. Bài tập tự luận có lời giải

Bài 1: Hai số phức z1 = x – 2i, z22 + yi (x, y ∈ R) là liên hợp của nhau khi

Lời giải:

Ta có z1− = x + 2i. Do đó, hai số phức đã cho gọi là liên hợp của nhau khi và chỉ khi

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy x= 2, y = 2. 

Bài 2: Tập hợp các điểm biểu diễn số phức z thòa mãn |z| = |1 + i| là

Lời giải:

Ta có |1 + i| = 1+1=2. Gọi M là điểm biểu diễn của z ta có |z| = OM.

Do đó: |z| = |1 + i| ⇔ OM = 2

Vậy tập hợp các điểm M biểu diễn số phức z là đường tròn tâm O, bán kính R= 2 .

Bài 3: Phần thực của số phức z = -i là

Lời giải:

Ta có: z = -i = 0 – i nên phần thực của số phức z = -i là 0

Bài 4: Phần ảo của số phức z = -1 là

Lời giải:

Ta có: z= -1 = -1 + 0.i nên phần ảo của số phức z = -1 là 0

Bài 5: Số phức liên hợp của số phức z = 1 + i là

Lời giải:

Số phức liên hợp của số phức z = 1 + i là z− = 1 – i

Bài 6: Cho z = 2i -1. Phần thực và phần ảo của z− là

Lời giải:

Ta có z = 2i – 1 = -1 + 2i ⇔ z− = -1 – 2i. Vậy phần thực của z− là -1 và phần ảo của z− là -2.

Bài 7: Cho số phức z = 2 – 2i. Tìm khẳng định sai.

A. Phần thực của z là: 2.

B. Phần ảo của z là: -2.

C. Số phức liên hợp của z là z− = -2 + 2i.

D. Môđun của z là

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Số phức liên hợp của z là z− = 2 + 2i nên khẳng định C là sai.

Bài 8 Cho số phức z = -1 + 3i. Phần thực, phần ảo của z− là?

Lời giải:

Ta có z = -1 + 3i => z− = -1 – 3i

Vậy phần thực và phần ảo của z− là -1 và -3.

Bài 9 Môđun của số phức z thỏa mãn z− = 8 – 6i là

Lời giải:

Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 10 Tìm các số thực x, y sao cho (x – 2y) + (x + y + 4).i = (2x + y) + 2yi.

Lời giải:

Ta có (x – 2y) + (x + y + 4).i = (2x + y) + 2yi.

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy x = -3, y = 1.

III. Bài tập vận dụng

Bài 1 Hai số phức z1 = x – 2i, z22 + yi (x, y ∈ R) là liên hợp của nhau khi?

Bài 2 Tập hợp các điểm biểu diễn số phức z thòa mãn |z| = |1 + i| là?

Bài 3 Phần thực của số phức z = -i là?

Bài 4 Phần ảo của số phức z = -1 là?

Bài 5 Gọi A, B là các điểm biểu diễn của các số phức z1 = -1 + 2i, z2 = 2 + 3i . Khi đó, độ dài đoạn thẳng AB là?

Bài 6 Số phức liên hợp của số phức z = 1 + i là?

Bài 7 Cho z = 2i -1. Phần thực và phần ảo của z− là?

Bài 8 Môđun của số phức z = -3 + 4i là?

Bài 9Gọi A, B là các điểm biểu diễn của các số phức z1 = -1 + 2i, z2 = 2 + 3i . Khi đó, độ dài đoạn thẳng AB là?

Bài 10 Hai điểm biểu diễn hai số phức liên hợp z = 1 + i và z− = 1 – i đối xứng nhau qua?

B. Lý thuyết Số phức

1. Số i.

Số i là số thỏa mãn: i2 = –1.

2. Định nghĩa số phức

Mỗi biểu thức dạng a + bi , trong đó a;  b∈R; i2 = –1 được gọi là một số phức.

Đối với số phức z = a + bi, ta nói: a là phần thực, b là phần ảo của z.

Tập hợp các số phức kí hiệu là C.

Ví dụ 1. Các số sau là những số phức: 2 – 3i; –8 + 4i; 5−  i2; 3 +​2i

Ví dụ 2. Số phức 6 – i có phần thực là 6, phần ảo là – 1.

3. Số phức bằng nhau

– Định nghĩa : Hai số phức bằng nhau nếu phần thực và phần ảo của chúng tương ứng bằng nhau :

a + bi = c + di  a = c và b = d.

Ví dụ 3. Tìm các số thực x và y biết :

(2x – 1) + (y – 2)i = 3 + (4 – y)i

Lời giải:

Ta có : (2x – 1) + (y – 2)i = 3 + (4 – y)i

⇔2x−1= 3y−2=  4−y⇔x=2y= 3

Vậy x = 2 và y = 3.

– Chú ý :

a) Mỗi số thực a được coi là một số phức với phần ảo bằng 0: a = a + 0i.

Như vậy, mỗi số thực cũng là một số phức. Ta có : R⊂C.

 b) Số phức 0 + bi được gọi là số thuần ảo và viết đơn giản là bi : bi = 0 + bi

Đặc biệt : i = 0 + 1.i

Số i được gọi là đơn vị ảo.

Ví dụ 4. Số phức z có phần thực là –12 và phần ảo là 12 là z = −12  +  12i.

4. Biểu diễn hình học số phức

Điểm M(a ; b) trong một hệ tọa độ vuông góc của mặt phẳng được gọi là điểm biểu diễn số phức z = a + bi.

Lý thuyết Số phức chi tiết – Toán lớp 12 (ảnh 1)

Ví dụ 5.

Lý thuyết Số phức chi tiết – Toán lớp 12 (ảnh 1)

Điểm A biểu diễn số phức 2 – 2i

Điểm B biểu diễn số phức 4.

Điểm C biểu diễn số phức – 2.

Điểm D biểu diễn số phức 2 + 3i.

Điểm E biểu diễn số phức 2.

Điểm F biểu diễn số phức – 3 + 2i.

Điểm G biểu diễn số phức –2 – 3i.

5. Mô đun của số phức.

Giả sử số phức z = a + bi được biểu diễn bởi điểm M(a ; b) trên mặt phẳng tọa độ.

Độ dài của vecto OM→ được gọi là môđun của số phức z và kí hiệu là |z|.

Vậy z  =  OM→  hay a+bi=OM→.

Ta thấy: a+  bi  =  a2+ b2

Ví dụ 6.

Lý thuyết Số phức chi tiết – Toán lớp 12 (ảnh 1)

6. Số phức liên hợp

– Định nghĩa : Cho số phức z = a + bi. Ta gọi a – bi là số phức liên hợp của z và kí hiệu là z¯  =  a−bi.

Ví dụ 7.

Nếu z = – 3 + 5i thì z¯  =  −3−  5i.

Nếu z = – 4 + 4i thì z¯  =  −4−4i.

– Nhận xét :

+ Trên  mặt phẳng tọa độ các điểm biểu diễn z và z¯ đối xứng nhau qua trục Ox.

+ Từ định nghĩa ta có: z¯¯  = z;  z¯  =  z.

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giáo án Vật Lí 11 Bài 7 (Kết nối tri thức 2023): Bài tập về sự chuyển hoá năng lượng trong dao động điều hoà

Next post

Giải SGK Vật lí 11 Bài 7 (Kết nối tri thức): Bài tập về sự chuyển hóa năng lượng trong dao động điều hòa

Bài liên quan:

50 Bài tập Sự đồng biến nghịch biến của hàm số (có đáp án)- Toán 12

Chuyên đề Tính đơn điệu của hàm số 2023 hay, chọn lọc

43 câu Trắc nghiệm Sự đồng biến, nghịch biến của hàm số có đáp án 2023 – Toán 12

264 bài tập trắc nghiệm chuyên đề chiều biến thiên của hàm số năm 2023

60 bài tập về Tính đơn điệu của hàm chứa dấu trị tuyệt đối có đáp án 2023

Phương pháp giải Tính đơn điệu của hàm số 2023 (lý thuyết và bài tập)

Xét tính đơn điệu của hàm số hợp có chứa tham số

Tính đồng biến, nghịch biến của hàm hợp thông qua bàng biến thiên và đồ thị

Leave a Comment Hủy

Mục lục

  1. 50 Bài tập Sự đồng biến nghịch biến của hàm số (có đáp án)- Toán 12
  2. Chuyên đề Tính đơn điệu của hàm số 2023 hay, chọn lọc
  3. 43 câu Trắc nghiệm Sự đồng biến, nghịch biến của hàm số có đáp án 2023 – Toán 12
  4. 264 bài tập trắc nghiệm chuyên đề chiều biến thiên của hàm số năm 2023
  5. 60 bài tập về Tính đơn điệu của hàm chứa dấu trị tuyệt đối có đáp án 2023
  6. Phương pháp giải Tính đơn điệu của hàm số 2023 (lý thuyết và bài tập)
  7. Xét tính đơn điệu của hàm số hợp có chứa tham số
  8. Tính đồng biến, nghịch biến của hàm hợp thông qua bàng biến thiên và đồ thị
  9. Tìm tham số M đề hàm số phân thức đồng biến, nghịch biến trên khoảng xác định
  10. Tìm tham số M để hàm số bậc ba đồng biến, nghịch biến trên R
  11. Tìm tham số M để hàm số bậc ba đồng biến, nghịch biến trên khoảng K cho trước
  12. Tìm khoảng đồng biến, nghịch biến bằng bảng biến thiên và đồ thị hàm số
  13. Dạng bài tập Tìm tham số m để hàm số đơn điệu trên tập xác định
  14. Dạng bài tập Tìm khoảng đồng biến và nghịch biến của hàm số
  15. 45 bài tập trắc nghiệm Tính đơn điệu của hàm số lớp 12 có đáp án 2023
  16. SBT Toán 12 Bài 1: Sự đồng biến, nghịch biến của hàm số | Giải SBT Toán lớp 12
  17. Giải Toán 12 Bài 1: Sự đồng biến, nghịch biến của hàm số
  18. 50 Bài tập Cực trị của hàm số (có đáp án)- Toán 12
  19. Phương pháp giải Cực trị của hàm số 2023 (lý thuyết và bài tập)
  20. 50 câu Trắc nghiệm Cực trị của hàm số có đáp án 2023 – Toán 12
  21. 50 bài tập trắc nghiệm cực trị hàm hợp có đáp án và lời giải chi tiết 2023
  22. 116 câu Trắc nghiệm Vận dụng – Vận dụng cao cực trị hàm chứa dấu giá trị tuyệt đối 2023
  23. Phương pháp giải Giá trị lớn nhất, giá trị nhỏ nhất của hàm số 2023 (lý thuyết và bài tập)
  24. Chuyên đề cực trị của hàm số
  25. Tìm M để đồ thị hàm số đạt cực trị tại các điểm A,B thỏa mãn điều kiện cho trước
  26. Cực trị hàm số, hàm số y=f(|x|)
  27. Cực trị hàm số trị tuyệt đối
  28. Dạng bài tập Cực trị có tham số
  29. Dạng bài tập Chứng minh về cực trị
  30. Giải Toán 12 Bài 2: Cực trị của hàm số
  31. 50 Bài tập Giá trị lớn nhất và giá trị nhỏ nhất của hàm số (có đáp án)- Toán 12
  32. Chuyên đề Giá trị lớn nhất, giá trị nhỏ nhất của hàm số 2022 hay, chọn lọc
  33. 50 Bài tập trắc nghiệm về GTLN – GTNN của hàm số chứa dấu giá trị tuyệt đối 2023
  34. Phương pháp giải về Giá trị lớn nhất, giá trị nhỏ nhất của hàm số 2023 (lý thuyết và bài tập)
  35. Chuyên đề Giá trị lớn nhất, giá trị nhỏ nhất – Ôn thi THPT Quốc gia
  36. Phương pháp giải Giá trị lớn nhất và nhỏ nhất của hàm số chứa dấu giá trị tuyệt đối 2023 (lý thuyết và bài tập)
  37. Bài toán tìm giá trị nhỏ nhất, giá trị lớn nhất có chứa tham số
  38. 29 câu Trắc nghiệm Giá trị lớn nhất, giá trị nhỏ nhất của hàm số có đáp án 2023 – Toán 12
  39. Dạng bài tập Ứng dụng thực tế của bài toán Min, Max có đáp án
  40. Giải Toán 12 Bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
  41. 50 Bài tập Đường tiệm cận (có đáp án)- Toán 12
  42. Các dạng bài tập trắc nghiệm về VDC đường tiệm cận của đồ thị hàm số
  43. 241 bài toán trắc nghiệm tiệm cận chứa tham số 2023
  44. Phương pháp giải Tiệm cận của đồ thị hàm số 2023 (lý thuyết và bài tập)
  45. Đường tiệm cận của đồ thị hàm số 2023 (lý thuyết và bài tập)
  46. Chuyên đề đường tiệm cận của đồ thị hàm số
  47. Tìm tham số M để đồ thị hàm số có tiệm cận
  48. Giải Toán 12 Bài 4: Đường tiệm cận
  49. 50 Bài tập Khảo sát sự biến thiên và vẽ đồ thị hàm số (có đáp án)- Toán 12
  50. Phương pháp giải Sự tương giao giữa hai đồ thị hàm số 2023 (lý thuyết và bài tập)
  51. Các dạng bài tâp về Đồ thị hàm số có đáp án
  52. Đồ thị hàm số chứa dấu giá trị tuyệt đối

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán