Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 12

50 Bài tập Phương trình bậc hai với hệ số thực (có đáp án)- Toán 12

By admin 07/10/2023 0

Bài tập Toán 12 Chương 4 Bài 4: Phương trình bậc hai với hệ số thực

A. Bài tập Phương trình bậc hai với hệ số thực

I. Bài tập trắc nghiệm

Bài 1: Phương trình z2 + 4x + 5 = 0 có các nghiệm là

A. 2 ± i   

B. -2 ± i   

C. 4 ± i   

D. -4 ± i

Lời giải:

Ta có: Δ’ = 22 – 1.5 = -1 = i2. Phương trình có hai nghiệm là:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 2: Phương trình z2 + 8z + 17 = 0 có hai nghiệm

A. 1 – i và 1 – 2i    

B. 4 – i và 4 + i

C. -4 – i và -4 + i    

D. -2 + 2i và -2 + 4i

Lời giải:

Ta có: Δ = 16 – 17 = -1 = i2. Phương trình có các nghiệm là:

z1 = -4 – i, z2 = -4 + i

Bài 3: Phương trình z2 – 4z + 9 = 0 có hai nghiệm. Giá trị biểu thức T = |z1| + |z2| bằng

A. – 6   

B. 6   

C. 8   

D. 23

Lời giải:

Ta có: Δ’ = 4 – 9 = -5 = 5i2. Phương trình có hai nghiệm là:

z1,2 = 2 ± i5

Vậy T = 24+5 = 29 = 6

Bài 4: Phương trình z4 + 3z2 – 4 = 0 có 4 nghiệm phức z1, z2, z3, z4. Giá trị biểu thức T = |z1| + |z2| + |z3| + |z4| bằng

A. 6    

B. 22   

C. 2 + 22  

D. 4 + 22

Lời giải:

Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

⇒ |z1| = |z2| = 1; |z3| = |z4| = 2

Vậy T = 1 + 1 + 2 + 2 = 6

Bài 5: Số phức z thỏa mãn

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Giá trị biểu thức

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

A. 1    

B. 2   

C. 3    

D. 3672

Lời giải:

Ta có: z + 1z = 3 <=> z2 – 3z + 1 = 0 (1)

Xét phương trình (1): Ta có: Δ = (3)2 – 4.1.1 = -1 = i2

Phương trình (1) có hai nghiệm là:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Do đó

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy T = 1 + 1 = 2

Bài 6: Phương trình z2 -az + b = 0 (a, b ∈ R) có nghiệm z = 1 + i khi

A. a = 2, b = -2    

B. a = 2, b = 2    

C. a = -2, b = 2   

D. a = -2, b = -2

Lời giải:

Thay z = 1 + i vào phương trình đã cho ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn đáp án B.

Bài 7: Phương trình 2z2 + 4z + 5 = 0 có các nghiệm là

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Ta có: Δ’ = 4 – 10 = -6 = 6i2

Phương trình đã cho có các nghiệm là

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn đáp án C.

Bài 8: Phương trình z2 – z + 1 = 0 có hai nghiệm là

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Ta có: Δ = 12 – 4 = -3 = 3i2

Các nghiệm của phương trình đã cho là

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn đáp án A.

Bài 9: Để phương trình z2 + bz + c = 0 nhận z1 = -4 + 2i và z2 = -4 – 2i làm nghiệm thì

A. b = -8, c = 20   

B. b = -8, c = -20

C. b = 8, c = 20    

D. b = 8, c = 20

Lời giải:

Gọi z1, z2 là hai nghiệm của phương trình đã cho, áp dụng hệ thức Vi-ét ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Để phương trình đã cho nhận z1, z2 làm nghiệm thì

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn đáp án D.

Bài 10: Phương trình z2 + 6z + 15 = 0 có các nghiệm là z1, z2. Giá trị biểu thức T = |z1| + |z2| bằng:

A. 215   

B. 6   

C. 45   

D. 23

Lời giải:

Ta có:Δ’ = 9 – 15 = -6 = 6i2

Các nghiệm của phương trình là z1 = – 3 – i6, z2 = – 3 + i6

Do đó

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn đáp án A.

II. Bài tập tự luận có lời giải

Bài 1: Phương trình z1 = 1 + 2i, z2 = 2 – 3i có nghiệm là z = 2 + i khi

A. a = 1, b = 4   

B. a = -1, b = 4   

C. a = -1, b = -4    

D. a = 1, b = -4

Lời giải:

Thay z = 2 + i vào phương trình đã cho ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 2: Phương trình (1 + i)2 = -7 + i có các nghiệm là?

Lời giải:

Phương trình đã cho tương đương với

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Viết -3 + 4i = 4i2 + 4i + 1 = (2i + 1)2, ta có: z2 = (2i + 1)2 <=> z = ±(2i + 1)

Chú ý: Nếu việc viết -3 + 4i = (2i + 1)2 gặp khó khăn thì có thể đặt z = a + bi (a, b ∈ R). Ta có :

(a + bi)2 = -3 + 4i <=> a2 – b2 + 2abi = -3 + 4i

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Từ phương trình thứ hai của hệ ta có b = 2a

Thay vào phương trình thứ nhất của hệ ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vì a ∈ R và a2 ≥ 0 nên a2 = 1 hay a = ±1. Từ đó ta có hai nghiệm : z1 = -1 – 2i và z2 = 1 + 2i

Câu 3: Phương trình z2 -az + b = 0 (a, b ∈ R) có nghiệm z = 1 + i khi

Lời giải:

Thay z = 1 + i vào phương trình đã cho ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 4: Phương trình 2z2 + 4z + 5 = 0 có các nghiệm là?

Lời giải:

Ta có: Δ’ = 4 – 10 = -6 = 6i2

Phương trình đã cho có các nghiệm là

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn đáp án C.

Câu 5: Phương trình z2 – z + 1 = 0 có hai nghiệm là?

Lời giải:

Ta có: Δ = 12 – 4 = -3 = 3i2

Các nghiệm của phương trình đã cho là

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 6: Để phương trình z2 + bz + c = 0 nhận z1 = -4 + 2i và z2 = -4 – 2i làm nghiệm thì?

Lời giải:

Gọi z1, z2 là hai nghiệm của phương trình đã cho, áp dụng hệ thức Vi-ét ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Để phương trình đã cho nhận z1, z2 làm nghiệm thì

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 7: Phương trình z2 + 6z + 15 = 0 có các nghiệm là z1, z2.Giá trị biểu thức T = |z1| + |z2| bằng?

Lời giải:

Ta có:Δ’ = 9 – 15 = -6 = 6i2

Các nghiệm của phương trình là z1 = – 3 – i6, z2 = – 3 + i6

Do đó

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 8: Phương trình z1 = 1 + 2i, z2 = 2 – 3i có nghiệm là z = 2 + i khi

Lời giải:

Thay z = 2 + i vào phương trình đã cho ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 9: Phương trình (1 + i)2 = -7 + i có các nghiệm là

Lời giải:

Phương trình đã cho tương đương với

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Viết -3 + 4i = 4i2 + 4i + 1 = (2i + 1)2, ta có: z2 = (2i + 1)2 <=> z = ±(2i + 1)

Chú ý: Nếu việc viết -3 + 4i = (2i + 1)2 gặp khó khăn thì có thể đặt z = a + bi (a, b ∈ R). Ta có :

(a + bi)2 = -3 + 4i <=> a2 – b2 + 2abi = -3 + 4i

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Từ phương trình thứ hai của hệ ta có b = 2a

Thay vào phương trình thứ nhất của hệ ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vì a ∈ R và a2 ≥ 0 nên a2 = 1 hay a = ±1 . Từ đó ta có hai nghiệm : z1 = -1 – 2i và z2 = 1 + 2i

Câu 10: Phương trình z2 + 4x + 5 = 0 có các nghiệm là

Lời giải:

Ta có: Δ’ = 22 – 1.5 = -1 = i2. Phương trình có hai nghiệm là:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

III. Bài tập vận dụng

Bài 1 Phương trình z2 + 8z + 17 = 0 có hai nghiệm là?

Bài 2 Phương trình z2 – 4z + 9 = 0 có hai nghiệm. Giá trị biểu thức T = |z1| + |z2| bằng?

Bài 3 Phương trình z4 + 3z2 – 4 = 0 có 4 nghiệm phức z1, z2, z3, z4. Giá trị biểu thức T = |z1| + |z2| + |z3| + |z4| bằng?

Bài 4 Thế nào là căn bậc hai của số thực dương a ?

Bài 5 Tìm các căn bậc hai phức của các số sau: -7;-8;-12;-20;-121

Bài 6 Giải các phương trình sau trên tập hợp số phức:

a) -3z2 + 2z – 1 = 0

b) 7z2 + 3z + 2 = 0

c) 5z2 – 7z + 11 = 0

Bài 7 Giải các phương trình sau trên tập hợp số phức:

a) z4 + z2 – 6 = 0

b) z4 + 7z2 + 10 = 0

Bài 8 Cho a, b, c ∈R,a ≠ 0,z1 , z2 là hai nghiệm phân biệt ( thực hoặc phức) của phương trình ax2+bx+c=0. Hãy tính z1+z2 và z1.z2 theo hệ số a, b, c.

Bài 9 Cho z = a + bi là một số phức. Hãy tìm phương trình bậc hai với hệ số thực nhận z và z− làm nghiệm.

Bài 10 Tìm các căn bậc hai của w = -5 + 12i.

B. Lý thuyết Phương trình bậc hai với hệ số thực

1. Căn bậc hai của số thực âm

Tương tự căn bậc hai của một số thực dương, từ i2 = –1, ta nói i là một căn bậc hai của – 1; – i cũng là một căn bậc hai của –1 vì (–i)2 = –1.

Từ đó, ta xác định được căn bậc hai của các số thực âm, chẳng hạn.

Căn bậc hai của –16 là ±4i vì ±4i2=−16

Căn bậc hai của –5 là ±  5i vì ±  5i2=−5

Tổng quát, các căn bậc hai của số thực a âm là ±ia.

2. Phương trình bậc hai với hệ số thực

Cho phương trình bậc hai ax2 + bx + c = 0 với a; b ; c∈ℝ; a  ≠  0.

Xét biệt số ∆ = b2 – 4ac của phương trình. Ta thấy:

Khi ∆ = 0, phương trình có một nghiệm thực x  =  −b2a.

Khi ∆ > 0, có hai căn bậc hai thực của ∆ là ±Δ và phương trình có hai nghiệm thực phân biệt, được xác định bởi công thức x1;2  =  −b±Δ2a.

Khi ∆ < 0, ta có hai căn bậc hai thuần ảo của ∆ là ±i Δ. Khi đó, phương trình có hai nghiệm phức được xác định bởi công thức x1;2  =  −b±iΔ2a.

– Nhận xét:

Trên tập hợp số phức, mọi phương trình bậc hai đều có hai nghiệm (không nhất thiết phân biệt).

Tổng quát: Mọi phương trình bậc n (n≥1):

a0.xn + a1.xn – 1 + ….+ an–1.x + an = 0

Trong đó; a0 ; a1;…..; an∈ℂ;  a0  ≠0đều có n nghiệm phức (các nghiệm không nhất thiết phân biệt).

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

20 câu Trắc nghiệm Sóng ngang. Sóng dọc. Sự truyền năng lượng của sóng cơ (Kết nối tri thức 2023) có đáp án – Vật lí lớp 11

Next post

Bài giảng điện tử Sóng ngang. Sóng dọc. Sự truyền năng lượng của sóng cơ | Kết nối tri thức Giáo án PPT Vật lí 11

Bài liên quan:

50 Bài tập Sự đồng biến nghịch biến của hàm số (có đáp án)- Toán 12

Chuyên đề Tính đơn điệu của hàm số 2023 hay, chọn lọc

43 câu Trắc nghiệm Sự đồng biến, nghịch biến của hàm số có đáp án 2023 – Toán 12

264 bài tập trắc nghiệm chuyên đề chiều biến thiên của hàm số năm 2023

60 bài tập về Tính đơn điệu của hàm chứa dấu trị tuyệt đối có đáp án 2023

Phương pháp giải Tính đơn điệu của hàm số 2023 (lý thuyết và bài tập)

Xét tính đơn điệu của hàm số hợp có chứa tham số

Tính đồng biến, nghịch biến của hàm hợp thông qua bàng biến thiên và đồ thị

Leave a Comment Hủy

Mục lục

  1. 50 Bài tập Sự đồng biến nghịch biến của hàm số (có đáp án)- Toán 12
  2. Chuyên đề Tính đơn điệu của hàm số 2023 hay, chọn lọc
  3. 43 câu Trắc nghiệm Sự đồng biến, nghịch biến của hàm số có đáp án 2023 – Toán 12
  4. 264 bài tập trắc nghiệm chuyên đề chiều biến thiên của hàm số năm 2023
  5. 60 bài tập về Tính đơn điệu của hàm chứa dấu trị tuyệt đối có đáp án 2023
  6. Phương pháp giải Tính đơn điệu của hàm số 2023 (lý thuyết và bài tập)
  7. Xét tính đơn điệu của hàm số hợp có chứa tham số
  8. Tính đồng biến, nghịch biến của hàm hợp thông qua bàng biến thiên và đồ thị
  9. Tìm tham số M đề hàm số phân thức đồng biến, nghịch biến trên khoảng xác định
  10. Tìm tham số M để hàm số bậc ba đồng biến, nghịch biến trên R
  11. Tìm tham số M để hàm số bậc ba đồng biến, nghịch biến trên khoảng K cho trước
  12. Tìm khoảng đồng biến, nghịch biến bằng bảng biến thiên và đồ thị hàm số
  13. Dạng bài tập Tìm tham số m để hàm số đơn điệu trên tập xác định
  14. Dạng bài tập Tìm khoảng đồng biến và nghịch biến của hàm số
  15. 45 bài tập trắc nghiệm Tính đơn điệu của hàm số lớp 12 có đáp án 2023
  16. SBT Toán 12 Bài 1: Sự đồng biến, nghịch biến của hàm số | Giải SBT Toán lớp 12
  17. Giải Toán 12 Bài 1: Sự đồng biến, nghịch biến của hàm số
  18. 50 Bài tập Cực trị của hàm số (có đáp án)- Toán 12
  19. Phương pháp giải Cực trị của hàm số 2023 (lý thuyết và bài tập)
  20. 50 câu Trắc nghiệm Cực trị của hàm số có đáp án 2023 – Toán 12
  21. 50 bài tập trắc nghiệm cực trị hàm hợp có đáp án và lời giải chi tiết 2023
  22. 116 câu Trắc nghiệm Vận dụng – Vận dụng cao cực trị hàm chứa dấu giá trị tuyệt đối 2023
  23. Phương pháp giải Giá trị lớn nhất, giá trị nhỏ nhất của hàm số 2023 (lý thuyết và bài tập)
  24. Chuyên đề cực trị của hàm số
  25. Tìm M để đồ thị hàm số đạt cực trị tại các điểm A,B thỏa mãn điều kiện cho trước
  26. Cực trị hàm số, hàm số y=f(|x|)
  27. Cực trị hàm số trị tuyệt đối
  28. Dạng bài tập Cực trị có tham số
  29. Dạng bài tập Chứng minh về cực trị
  30. Giải Toán 12 Bài 2: Cực trị của hàm số
  31. 50 Bài tập Giá trị lớn nhất và giá trị nhỏ nhất của hàm số (có đáp án)- Toán 12
  32. Chuyên đề Giá trị lớn nhất, giá trị nhỏ nhất của hàm số 2022 hay, chọn lọc
  33. 50 Bài tập trắc nghiệm về GTLN – GTNN của hàm số chứa dấu giá trị tuyệt đối 2023
  34. Phương pháp giải về Giá trị lớn nhất, giá trị nhỏ nhất của hàm số 2023 (lý thuyết và bài tập)
  35. Chuyên đề Giá trị lớn nhất, giá trị nhỏ nhất – Ôn thi THPT Quốc gia
  36. Phương pháp giải Giá trị lớn nhất và nhỏ nhất của hàm số chứa dấu giá trị tuyệt đối 2023 (lý thuyết và bài tập)
  37. Bài toán tìm giá trị nhỏ nhất, giá trị lớn nhất có chứa tham số
  38. 29 câu Trắc nghiệm Giá trị lớn nhất, giá trị nhỏ nhất của hàm số có đáp án 2023 – Toán 12
  39. Dạng bài tập Ứng dụng thực tế của bài toán Min, Max có đáp án
  40. Giải Toán 12 Bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
  41. 50 Bài tập Đường tiệm cận (có đáp án)- Toán 12
  42. Các dạng bài tập trắc nghiệm về VDC đường tiệm cận của đồ thị hàm số
  43. 241 bài toán trắc nghiệm tiệm cận chứa tham số 2023
  44. Phương pháp giải Tiệm cận của đồ thị hàm số 2023 (lý thuyết và bài tập)
  45. Đường tiệm cận của đồ thị hàm số 2023 (lý thuyết và bài tập)
  46. Chuyên đề đường tiệm cận của đồ thị hàm số
  47. Tìm tham số M để đồ thị hàm số có tiệm cận
  48. Giải Toán 12 Bài 4: Đường tiệm cận
  49. 50 Bài tập Khảo sát sự biến thiên và vẽ đồ thị hàm số (có đáp án)- Toán 12
  50. Phương pháp giải Sự tương giao giữa hai đồ thị hàm số 2023 (lý thuyết và bài tập)
  51. Các dạng bài tâp về Đồ thị hàm số có đáp án
  52. Đồ thị hàm số chứa dấu giá trị tuyệt đối

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán