Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 7

Sách bài tập Toán 7 Bài 7 (Kết nối tri thức): Tập hợp các số thực

By admin 15/10/2023 0

Giải SBT Toán lớp 7 Bài 7: Tập hợp các số thực

Giải trang 31 Tập 1

Bài 2.22 trang 31 sách bài tập Toán lớp 7 Tập 1:Kí hiệu ℕ;ℤ;ℚ;𝕀;ℝ theo thứ tự là tập hợp các số tự nhiên, tập hợp các số nguyên, tập hợp các số hữu tỉ, tập hợp các số vô tỉ và tập hợp các số thực. Khẳng định nào sau đấy sai?

A. Nếu x∈ℕ thì x∈ℤ;

B. Nếu x∈ℝ và x∉ℚ thì x∈𝕀;

C. 1∈ℝ;

D. Nếu x∉𝕀 thì x viết được thành số thập phân hữu hạn.

Lời giải:

A. Nếu x ∈ ℕ thì x ∈ ℤ

Khẳng định A đúng vì tất cả các số tự nhiên đều là số nguyên;

B. Nếu x ∈ ℝ và x ∉ ℚ thì x∈𝕀

Khẳng định B đúng vì tập số thực gồm có số hữu tỉ và số vô tỉ nên nếu x không là số hữu tỉ thì x là số vô tỉ.

C. 1 ∈ ℝ

Khẳng định C đúng vì 1 là số thực.

D. Nếu x∉𝕀 thì x viết được thành số thập phân hữu hạn

Khẳng định D sai vì nếu x không là số vô tỉ thì x là số hữu tỉ mà số hữu tỉ gồm số thập phân hữu hạn và số thập phân vô hạn tuần hoàn nên khẳng định D sai.

Vậy khẳng định sai là D.

Bài 2.23 trang 31 sách bài tập Toán lớp 7 Tập 1: Xét tính đúng, sai của các khẳng định sau:

a) Nếu x là số hữu tỉ thì x là số thực;

b) 2 không phải là số hữu tỉ;

c) Nếu x là số nguyên thì x là số thực;

d) Nếu x là số tự nhiên thì x là số vô tỉ.

Lời giải:

a) Nếu x là số hữu tỉ thì x là số thực. Khẳng định này đúng vì mọi số hữu tỉ đều là số thực.

b) 2 không phải là số hữu tỉ. Khẳng định này sai vì 2 là số nguyên nên 2 là số hữu tỉ.

c) Nếu x là số nguyên thì x là số thực. Khẳng định này sai vì nếu x < 0 thì không tồn tại x.

d) Nếu x là số tự nhiên thì x là số vô tỉ. Khẳng định này sai vì nếu x = 25 thì x=25 = 5 là số hữu tỉ.

Bài 2.24 trang 31 sách bài tập Toán lớp 7 Tập 1:Tìm số đối của các số thực sau: -2,1; -0,(1); 2π; 3 – 2.

Lời giải:

Số đối của số -2,1 là 2,1 vì (-2,1) + 2,1 = 0;

Số đối của số -0,(1) là 0,(1) vì -0,(1) + 0,(1) = 0;

Số đối của 2π là −2π vì 2π+−2π = 0

Số đối của 3 – 2 là -3 + 2 vì 3 – 2 + (-3) + 2 = 0.

Giải trang 32 Tập 1

Bài 2.25 trang 32 sách bài tập Toán lớp 7 Tập 1: So sánh a = 1,(41) và 2.

Lời giải:

a = 1,(41) = 1,414141….

2= 1,414213…

Kể từ trái sang phải, chữ số cùng hàng đầu tiên khác nhau nằm ở hàng phần chục nghìn. Mà 1 < 2 nên 1,414141… < 1,414213…

Do đó, a = 1,(41) < 2.

Bài 2.26 trang 32 sách bài tập Toán lớp 7 Tập 1:Viết các số thực sau theo thứ tự từ bé đến lớn:

5;−1,7(5);π;−2;227;0.

Lời giải:

Ta chia các số thực đã cho thành ba nhóm.

Nhóm số thực không âm, không dương: 0

Nhóm số thực âm: -1,7(5); -2;

Nhóm số thực dương: 5;π;227

Ta đi so sánh nhóm số thực âm.

Thay vì so sánh -1,7(5) và -2 ta đi so sánh hai số đối của chúng là 1,7(5) và 2.

Nhận thấy 1,7(5) có phần nguyên là 1 < 2 nên 1,7(5) < 2. Do đó, -1,7(5) > -2.

Ta đi so sánh nhóm số thực dương.

5=2,23606…

π=3,1215926…

227=3,14287…

Ta thấy 2 < 3 nên số nào có phần nguyên là 2 sẽ bé hơn số có phần nguyên là 3. Do đó, 5 nhỏ nhất trong ba số.

Ta đi so sánh π và 227.

Ta có: π = 3,1415926…

227 = 3,14287…

Nhận thấy chữ số cùng hàng đầu tiên khác nhau là chữ số hàng nghìn. Vì 1 < 2 nên 3,1415926… < 3,14287…hay π<227

Sắp xếp các số đã cho theo thứ tự từ bé đến lớn như sau:

-2 < -1,7(5) < 0 < 5<π<227.

Bài 2.27 trang 32 sách bài tập Toán lớp 7 Tập 1:Tìm các số thực x có giá trị tuyệt đối bằng 1,6(7). Điểm biểu diễn các số thực tìm được nằm trong hay nằm ngoài khoảng giữa hai điểm -2 và 2,(1) trên trục số?

Lời giải:

Ta có:

|x| = 1,6(7) nên x = 1,6(7) hoặc x = -1,6(7)

Ta so sánh 1,6(7) với -2 và 2,(1)

Vì 1,6(7) là số thực dương còn -2 là số thực âm nên 1,6(7) > -2.

Lại có phần nguyên của 1,6(7) là 1 và phần nguyên của 2,(1) là 2 nên 1,6(7) < 2.

Vậy 1,6(7) nàm trong khoảng -2 và 2,(1).

Ta so sánh -1,6(7) với -2 và 2,(1)

Ta có: -1,6(7) là số thực âm và 2,(1) là số thực dương nên -1,6(7) < 2,(1).

Số đối của -1,6(7) là 1,6(7) và số đối của -2 là 2. Vì 1,6(7) có phần nguyên là 1 < 2 nên 1,6(7) < 2. Do đó, -1,6(7) > -2.

Vậy -1,6(7) nằm trong khoảng -2 và 2,(1).

Bài 2.28 trang 32 sách bài tập Toán lớp 7 Tập 1: Xác định dấu và giá trị tuyệt đối của các số thực sau:

a) -1,3(51);

b) 1−2;

c) 3−22−5

Lời giải:

a) -1,3(51) mang dấu âm và |-1,3(51)| = 1,3(51).

b) 1−2

Vì 1 < 2 nên 1<2 hay 1 < 2

Do đó 1 – 2 < 0 nên 1 – 2 mang dấu âm.

|1 – 2| = -(1 – 2) = 2 – 1.

c) 3−22−5

Vì 9 > 2 nên 9>2 hay 3 > 2. Do đó, 3−2 > 0.

Lại có 4 < 5 nên 4<5 hay 2<5. Do đó, 2 – 5 < 0.

Vì 3−2 > 0 và 2 – 5 < 0 nên 3−22−5 < 0

Ta có:

3−22−5=3.2−5−2.2−5

=6−35−22+2.5

=6−35−22+10

Ta có:

6−35−22+10

=−6−35−22+10

=−6+35+22−10

Bài 2.29 trang 32 sách bài tập Toán lớp 7 Tập 1:Không sử dụng máy tính cầm tay, ước lượng giá trị thập phân của số 3 với độ chính xác 0,05.

Lời giải:

Muốn ước lượng giá trị thập phân của 3 với độ chính xác 0,05 ta phải làm tròn số đó đến hàng phần mười.

Trong ví dụ 3 (trang 32) ta thấy 1,7 < 3 < 1,8. Cần xét xem 3 gần với 1,7 hơn hay 1,8 hơn. Muốn vậy ta xét số 1,7+1,82=1,75 điểm biểu diễn số 1,75 cách đều 1,7 và 1,8.

Ta có (1,75)2 = 3,0625, do đó 3 < (1,75)2 < 1,75. Vì vậy 3 < 1,752

Suy ra, 3<1,75. Từ đó, 1,7 < 3 < 1,75. Vì vậy 3 gần 1,7 hơn so với 1,8.

Vậy làm tròn giá trị thập phân của 3 đến hàng phần mười (độ chính xác 0,05) ta được 3≈1,7.

Bài 2.30 trang 32 sách bài tập Toán lớp 7 Tập 1:Tính 6−35+5+35

Lời giải:

Ta có 6 = 36 > 35 suy ra 6 – 35 > 0, do đó

6−35+5+35 = 6−35 + 5+35 = (6 + 5) + (35 – 35)

= 11 + 0 = 11

Bài 2.31 trang 32 sách bài tập Toán lớp 7 Tập 1:Biết 11 là số vô tỉ. Trong các phép tính sau, những phép tính nào có kết quả là số hữu tỉ?

a) 111;

b) 11.11;

c) 1 + 11;

d) 114.

Lời giải:

a) 111 phép tính này không cho ta kết quả là số hữu tỉ;

b) 11.11=11.11=112=11 phép tính này cho ta kết quả là số hữu tỉ;

c) 1 + 11 phép tính này không cho ta kết quả là số hữu tỉ;

d) Biết căn 11 là số vô tỉ Trong các phép tính sau, những phép tính nào có kết quảphép tính này cho ta kết quả là số hữu tỉ.

Bài 2.32 trang 32 sách bài tập Toán lớp 7 Tập 1: Tính giá trị của các biểu thức sau:

a) 0,25−0,49;

b) 0,2.100−0,25.

Lời giải:

a) 0,25−0,49=0,52−0,72 = 0,5 – 0,7 = 0,2;

b) 0,2.100−0,25=0,2.102−0,52 = 0,2.10 – 0,5 = 2 – 0,5 = 1,5.

Bài 2.33 trang 32 sách bài tập Toán lớp 7 Tập 1:So sánh a = 0,(12) và b = 0,1(21).

Lời giải:

Ta thấy 100a = 12(12) = 12 + a nên 99a = 12, suy ra a = 1299.

Tương tự, b = 0,1 + 0,0(21) = 110+110.0,(21)

Đặt x = 0,(21) thì 100x = 21,(21) = 21 + x suy ra x = 2199

Và b = 110+110.2199=1101+2199=110.12099=1299.

Vậy a = b

Bài 2.34 trang 32 sách bài tập Toán lớp 7 Tập 1:Tìm giá trị nhỏ nhất của biểu thức A = 2+3x2+1.

Lời giải:

Ta có: x2 ≥ 0 với mọi số thực x nên x2 + 1 ≥ 1 với mọi số thực x.

Suy ra: x2+1≥1 nên x2+1≥1.

Vì x2+1≥1 nên 3.x2+1≥3.1 hay 3.x2+1≥3

Suy ra A = 2 + 3.x2+1≥2+3=5

Vậy Amin = 5 khi x = 0.

Bài 2.35 trang 32 sách bài tập Toán lớp 7 Tập 1:Tìm giá trị nhỏ nhất của biểu thức B = |x – 1| + |x – 3|.

Lời giải:

Xét các điểm biểu diễn số thực x trên trục số. Biểu thức đã cho đúng bằng tổng các khoảng cách từ x tới hai điểm 1 và 3. Nếu x nằm ngoài đoạn giữa 1 và 3 thì tổng hai khoảng cách trên lớn hơn khoảng cách giữa 1 và 3. Nếu x nằm trong đoạn giữa 1 và 3 thì tổng hai khoảng cách nói trên đúng bằng khoảng cách giữa 1 và 3. Vì vậy, biểu thức B đã cho có giá trị nhỏ nhất là 2 (đạt được khi 1 ≤ x ≤ 2).

Bài 2.36 trang 32 sách bài tập Toán lớp 7 Tập 1:Hãy giải thích tại sao |x + y| ≤ |x| + |y| với mọi số thực x, y.

Lời giải:

Xét hai trường hợp:

Nếu x + y ≥ 0 thì |x + y| = x + y ≤ |x| + |y| (vì x ≤ |x| với mọi số thực x)

Nếu x + y < 0 thì |x + y| = –x – y ≤ |-x| + |-y| = |x| + |y|.

Vậy với mọi x, y là số thực thì ta luôn có |x + y| ≤ |x| + |y|.

Xem thêm các bài giải SBT Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

Bài 6: Số vô tỉ. Căn bậc hai số học

Bài 7: Tập hợp các số thực

Ôn tập chương 2

Bài 8: Góc ở vị trí đặc biệt. Tia phân giác của một góc

Bài 9: Hai đường thẳng song song và dấu hiệu nhận biết

Tags : Tags Giải sách bài tập   Tập hợp các số thực   toán 7
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Lý thuyết Toán lớp 6 Chương 6 (Chân trời sáng tạo 2023): Số thập phân hay, chi tiết

Next post

Lý thuyết Lập phương của một tổng. Lập phương của một hiệu (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8

Bài liên quan:

20 câu Trắc nghiệm Tập hợp các số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7

Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

20 Bài tập Tập hợp các số hữu tỉ có đáp án – Toán 7

Giải sgk tất cả các môn lớp 7 Kết nối tri thức | Giải sgk các môn lớp 7 chương trình mới

Trọn bộ Trắc nghiệm Toán 7 Kết nối tri thức có đáp án

Giải sgk Toán 7 (cả 3 bộ sách) | Giải bài tập Toán 7 (hay, chi tiết)

Bài giảng điện tử Tập hợp các số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7

Bài giảng điện tử Toán 7 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 7

Leave a Comment Hủy

Mục lục

  1. 20 câu Trắc nghiệm Tập hợp các số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  2. Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  3. 20 Bài tập Tập hợp các số hữu tỉ có đáp án – Toán 7
  4. Giải sgk tất cả các môn lớp 7 Kết nối tri thức | Giải sgk các môn lớp 7 chương trình mới
  5. Trọn bộ Trắc nghiệm Toán 7 Kết nối tri thức có đáp án
  6. Giải sgk Toán 7 (cả 3 bộ sách) | Giải bài tập Toán 7 (hay, chi tiết)
  7. Bài giảng điện tử Tập hợp các số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7
  8. Bài giảng điện tử Toán 7 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 7
  9. Giáo án Toán 7 Bài 1 (Kết nối tri thức 2023): Tập hợp các số hữu tỉ
  10. Giáo án Toán 7 Kết nối tri thức (cả năm) mới nhất 2023
  11. Vở thực hành Toán 7 Kết nối tri thức | Giải VTH Toán 7 Tập 1, Tập 2 hay, chi tiết
  12. Vở thực hành Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  13. Lý thuyết Toán lớp 7 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 7 | Kết nối tri thức
  14. Sách bài tập Toán 7 Kết nối tri thức | SBT Toán 7 | Giải SBT Toán 7 | Giải sách bài tập Toán 7 hay nhất | Giải SBT Toán 7 Tập 1, Tập 2 | Giải SBT Toán lớp 7 Kết nối tri thức | SBT Toán 7 KNTT
  15. Giải sgk Toán 7 Kết nối tri thức | Giải Toán 7 | Giải Toán lớp 7 | Giải bài tập Toán 7 hay nhất | Giải Toán 7 Tập 1, Tập 2 Kết nối tri thức
  16. Sách bài tập Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  17. Giải SGK Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  18. 20 câu Trắc nghiệm Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  19. Lý thuyết Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  20. 21 Bài tập Cộng, trừ, nhân, chia số hữu tỉ có đáp án – Toán 7
  21. Bài giảng điện tử Cộng, trừ, nhân, chia số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7
  22. Giáo án Toán 7 Bài 2 (Kết nối tri thức 2023): Cộng, trừ, nhân, chia số hữu tỉ
  23. Vở thực hành Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  24. Sách bài tập Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  25. Giải SGK Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  26. Giáo án Toán 7 (Kết nối tri thức 2023): Luyện tập chung trang 14
  27. Vở thực hành Toán 7 (Kết nối tri thức): Luyện tập chung trang 11, 12, 13
  28. Giải SGK Toán 7 (Kết nối tri thức): Luyện tập chung trang 14
  29. 20 câu Trắc nghiệm Lũy thừa với số mũ tự nhiên của 1 số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  30. Lý thuyết Lũy thừa với số mũ tự nhiên của một số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  31. Vở thực hành Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ
  32. 20 Bài tập Lũy thừa với số mũ tự nhiên của một số hữu tỉ có đáp án – Toán 7
  33. Sách bài tập Toán 7 Bài 3 (Kết nối tri thức): Luỹ thừa với số mũ tự nhiên của một số hữu tỉ
  34. Giải SGK Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ
  35. 22 câu Trắc nghiệm Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  36. Lý thuyết Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  37. Bài giảng điện tử Thứ tự thực hiện các phép tính. Quy tắc chuyển vế | Kết nối tri thức Giáo án PPT Toán 7
  38. Giáo án Toán 7 Bài 4 (Kết nối tri thức 2023): Thứ tự thực hiện các phép tính. quy tắc chuyển vế
  39. Vở thực hành Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện phép tính. Quy tắc chuyển vế
  40. 20 Bài tập Thứ tự thực hiện các phép tính. Quy tắc chuyển vế có đáp án – Toán 7
  41. Sách bài tập Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  42. Giải SGK Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  43. Giáo án Toán 7 (Kết nối tri thức 2023): Luyện tập chung trang 23
  44. Vở thực hành Toán 7 (Kết nối tri thức): Luyện tập chung trang 19, 20, 21
  45. Toán lớp 7 (Kết nối tri thức) Luyện tập chung trang 23
  46. 32 câu Trắc nghiệm Toán lớp 7 Chương 1 (Kết nối tri thức) có đáp án: Số hữu tỉ
  47. Lý thuyết Toán 7 Chương 1 (Kết nối tri thức 2023): Số hữu tỉ hay, chi tiết
  48. Giáo án Toán 7 (Kết nối tri thức 2023): Bài tập cuối chương 1
  49. Vở thực hành Toán 7 (Kết nối tri thức): Bài ôn tập cuối chương 1
  50. 24 Bài tập Toán 7 Chương 1 có đáp án: Số hữu tỉ
  51. Sách bài tập Toán 7 (Kết nối tri thức): Ôn tập chương 1 trang 20, 21
  52. Giải SGK Toán 7 (Kết nối tri thức): Bài tập cuối chương 1

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán