Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 7

Lý thuyết Phép cộng và phép trừ đa thức một biến (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

By admin 16/10/2023 0

Lý thuyết Toán lớp 7 Bài 26: Phép cộng và phép trừ đa thức một biến

Lý thuyết Phép cộng và phép trừ đa thức một biến

1. Cộng hai đa thức một biến

• Cách 1: Viết hai đa thức trong dấu ngoặc rồi nối chúng bởi dấu “+”. Sau đó bỏ ngoặc rồi nhóm các hạng tử cùng bậc và thu gọn.

• Cách 2: Đặt tính cộng sao cho các hạng tử cùng bậc của hai đa thức thì thẳng cột với nhau rồi cộng theo từng cột. Nếu đa thức khuyết một hạng tử bậc nào đó thì ta để một khoảng trống ứng với hạng tử đó.

Ví dụ:

+ Cho hai đa thức A(x) = x4 + 2x3 – x2 + 9x – 3; B(x) = – x4 + 5x2 – 3x + 1

Muốn tính tổng hai đa thức A(x) và B(x) ta làm như sau:

Cách 1:

A(x) + B(x)

= (x4 + 2x3 – x2 + 9x – 3) + (– x4 + 5x2 – 3x + 1) ⟵ Viết hai đa thức trong dấu ngoặc

= x4 + 2x3 – x2 + 9x – 3 – x4 + 5x2 – 3x + 1 ⟵ Bỏ dấu ngoặc

= (x4 – x4) + 2x3 + (– x2 + 5x2) + (9x – 3x) – (3 – 1) ⟵ Nhóm các hạng tử cùng bậc

= 2x3 + 4x2 + 6x – 2

Vậy A(x) + B(x) = 2x3 + 4x2 + 6x – 2.

Cách 2: Đặt tính. Ta thấy đa thức B(x) bị khuyết hạng tử bậc 3 nên ta để khoảng trống ứng với hạng tử này khi đặt tính.

Lý thuyết Toán 7 Kết nối tri thức Bài 26: Phép cộng và phép trừ đa thức một biến (ảnh 1)

Chú ý: Phép cộng đa thức cũng có tính chất như phép cộng số thực. Cụ thể là:

+ Tính chất giao hoán: A + B = B + A;

+ Tính chất kết hợp: (A + B) + C = A + (B + C);

+ Cộng với đa thức không: A + 0 = 0 + A = A.

2. Trừ hai đa thức một biến

• Cách 1: Viết hai đa thức trong dấu ngoặc rồi nối chúng bởi dấu “–”. Sau đó bỏ ngoặc rồi nhóm các hạng tử cùng bậc và thu gọn.

• Cách 2: Đặt tính trừ sao cho các hạng tử cùng bậc của hai đa thức thì thẳng cột với nhau rồi trừ theo từng cột. Nếu đa thức khuyết một hạng tử bậc nào đó thì ta để một khoảng trống ứng với hạng tử đó.

Ví dụ:

+ Cho hai đa thức A(x) = x4 + 2x3 – x2 + 9x – 3; B(x) = – x4 + 5x2 – 3x + 1

Muốn tính hiệu A(x) – B(x) ta làm như sau:

Cách 1:

A(x) – B(x)

= (x4 + 2x3 – x2 + 9x – 3) – (– x4 + 5x2 – 3x + 1) ⟵ Viết hai đa thức trong dấu ngoặc

= x4 + 2x3 – x2 + 9x – 3 + x4 – 5x2 + 3x – 1 ⟵ Bỏ dấu ngoặc

= (x4 + x4) + 2x3 – (x2 + 5x2) + (9x + 3x) – (3 + 1) ⟵ Nhóm các hạng tử cùng bậc

= 2x4 + 2x3 – 6x2 + 12x – 4

Vậy A(x) – B(x) = 2x4 + 2x3 – 6x2 + 12x – 4.

Cách 2:

Lý thuyết Toán 7 Kết nối tri thức Bài 26: Phép cộng và phép trừ đa thức một biến (ảnh 2)

Chú ý: Tương tự như các số, với các đa thức P, Q và R, ta cũng có:

– Nếu Q + R = P thì R = P – Q.

– Nếu R = P – Q thì Q + R = P.

Bài tập Phép cộng và phép trừ đa thức một biến

Bài 1. Cho 3 đa thức:

A(x) = x4 + 2x3 + 2x2 – x – 2;

B(x) = 3x4 – x3 + x2 – 2x + 1;

C(x) = – 3x4 + x3 – 2x + 1;

a) Tính A(x) + B(x);

b) Tính A(x) – B(x);

c) Tính A(x) + B(x) + C(x);

d) Tính C(x) – B(x) – A(x).

Hướng dẫn giải

a) Cách 1:

A(x) + B(x) = (x4 + 2x3 + 2x2 – x – 2) + (3x4 – x3 + x2 – 2x + 1)

= x4 + 2x3 + 2x2 – x – 2 + 3x4 – x3 + x2 – 2x + 1

= (x4 + 3x4) + (2x3 – x3) + (2x2 + x2) – (x + 2x) – (2 – 1)

= 4x4 + x3 + 3x2 – 3x – 1

Cách 2: Đặt tính

Lý thuyết Toán 7 Kết nối tri thức Bài 26: Phép cộng và phép trừ đa thức một biến (ảnh 3)

b) Cách 1:

A(x) – B(x) = (x4 + 2x3 + 2x2 – x – 2) – (3x4 – x3 + x2 – 2x + 1)

= x4 + 2x3 + 2x2 – x – 2 – 3x4 + x3 – x2 + 2x – 1

= (x4 – 3x4) + (2x3 + x3) + (2x2 – x2) + (– x + 2x) – (2 + 1)

= – 2x4 + 3x3 + x2 + x – 3

Cách 2: Đặt tính

Lý thuyết Toán 7 Kết nối tri thức Bài 26: Phép cộng và phép trừ đa thức một biến (ảnh 4)

c) Đặt tính:

Lý thuyết Toán 7 Kết nối tri thức Bài 26: Phép cộng và phép trừ đa thức một biến (ảnh 5)

Vậy A(x) + B(x) + C(x) = x4 + 2x3 + 3x2 – 5x.

d) Đặt tính

Lý thuyết Toán 7 Kết nối tri thức Bài 26: Phép cộng và phép trừ đa thức một biến (ảnh 6)

Vậy C(x) – B(x) – A(x) = – 7x4 – 3x2 + x + 2.

Bài 2. Cho P(x) = 2x4 – x2 + x – 2; Q(x) = 3x4 + x3 + 2x2 + x + 1.

a) Tìm đa thức H(x), biết H(x) + P(x) = Q(x);

b) Tìm đa thức M(x), biết M(x) – Q(x) = P(x).

Hướng dẫn giải

a) H(x) + P(x) = Q(x)

nên H(x) = Q(x) – P(x)

= (3x4 + x3 + 2x2 + x + 1) – (2x4 – x2 + x – 2)

= 3x4 + x3 + 2x2 + x + 1 – 2x4 + x2 – x + 2

= (3x4 – 2x4) + x3 + (2x2 + x2) + (x – x) + (1 + 2)

= x4 + x3 + 3x2 + 3

Vậy H(x) = x4 + x3 + 3x2 + 3.

b) M(x) – Q(x) = P(x)

nên M(x) = Q(x) + P(x)

= (3x4 + x3 + 2x2 + x + 1) + (2x4 – x2 + x – 2)

= 3x4 + x3 + 2x2 + x + 1 + 2x4 – x2 + x – 2

= (3x4 + 2x4) + x3 + (2x2 – x2) + (x + x) + (1 – 2)

= 5x4 + x3 + x2 + 2x – 1

Vậy M(x) = 5x4 + x3 + x2 + 2x – 1.

Bài 3. Một xe khách đi từ Hà Nội đến Hải Phòng với vận tốc 60 km/h. Sau đó 30 phút, một xe du lịch cũng đi từ Hà Nội đến Hải Phòng với vận tốc 80km/h. Cả hai xe đều không nghỉ dọc đường.

a) Gọi A(x) là đa thức biểu thị quãng đường xe du lịch đi được và B(x) là đa thức biểu thị quãng đường xe khách đi được kể từ khi xuất phát đến khi xe du lịch đi được x giờ. Tìm A(x) và B(x).

b) Chứng tỏ rằng đa thức G(x) = A(x) – B(x) có nghiệm là x = 32. Hãy giải thích ý nghĩa nghiệm 32 của đa thức G(x).

Hướng dẫn giải

a) Quãng đường xe du lịch đi được sau x giờ là: 80x (km)

Khi xe du lịch đi được x giờ thì xe khách đi được khoảng thời gian là:

x giờ + 30 phút = x + 0,5 (giờ)

Quãng đường xe khách đi được sau khi xe du lịch đi được x giờ là:

60 . (x + 0,5) = 60x + 30 (km)

Vậy A(x) = 80x; B(x) = 60x + 30.

b) G(x) = A(x) – B(x)

= 80x – (60x + 30)

= 80x – 60x – 30

= 20x – 30

Vậy G(x) = 20x – 30.

Ta có: G32=20⋅32−30=0

Vậy x = 32 là nghiệm của đa thức G(x).

Nghiệm x = 32 cho thấy sau 32 giờ thì quãng đường đi được của xe khách bằng xe du lịch hay sau 1,5 giờ thì hai xe gặp nhau.

Xem thêm các bài tóm tắt lý thuyết Toán 7 Kết nối tri thức hay, chi tiết khác:

Lý thuyết Bài 25: Đa thức một biến

Lý thuyết Bài 26: Phép cộng và phép trừ đa thức một biến

Lý thuyết Bài 27: Phép nhân đa thức một biến

Lý thuyết Bài 28: Phép chia đa thức một biến

Lý thuyết Chương 7: Biểu thức đại số và đa thức một biến

Lý thuyết Bài 29: Lý thuyết Làm quen với biến cố

Tags : Tags Lý thuyết Toán 7   toán 7
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Bài tập cuối tuần Toán lớp 1 Kết nối tri thức Tuần 6

Next post

Lý thuyết Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu không ghép nhóm (Cánh diều 2023) hay, chi tiết | Toán lớp 10

Bài liên quan:

20 câu Trắc nghiệm Tập hợp các số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7

Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

20 Bài tập Tập hợp các số hữu tỉ có đáp án – Toán 7

Giải sgk tất cả các môn lớp 7 Kết nối tri thức | Giải sgk các môn lớp 7 chương trình mới

Trọn bộ Trắc nghiệm Toán 7 Kết nối tri thức có đáp án

Giải sgk Toán 7 (cả 3 bộ sách) | Giải bài tập Toán 7 (hay, chi tiết)

Bài giảng điện tử Tập hợp các số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7

Bài giảng điện tử Toán 7 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 7

Leave a Comment Hủy

Mục lục

  1. 20 câu Trắc nghiệm Tập hợp các số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  2. Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  3. 20 Bài tập Tập hợp các số hữu tỉ có đáp án – Toán 7
  4. Giải sgk tất cả các môn lớp 7 Kết nối tri thức | Giải sgk các môn lớp 7 chương trình mới
  5. Trọn bộ Trắc nghiệm Toán 7 Kết nối tri thức có đáp án
  6. Giải sgk Toán 7 (cả 3 bộ sách) | Giải bài tập Toán 7 (hay, chi tiết)
  7. Bài giảng điện tử Tập hợp các số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7
  8. Bài giảng điện tử Toán 7 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 7
  9. Giáo án Toán 7 Bài 1 (Kết nối tri thức 2023): Tập hợp các số hữu tỉ
  10. Giáo án Toán 7 Kết nối tri thức (cả năm) mới nhất 2023
  11. Vở thực hành Toán 7 Kết nối tri thức | Giải VTH Toán 7 Tập 1, Tập 2 hay, chi tiết
  12. Vở thực hành Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  13. Lý thuyết Toán lớp 7 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 7 | Kết nối tri thức
  14. Sách bài tập Toán 7 Kết nối tri thức | SBT Toán 7 | Giải SBT Toán 7 | Giải sách bài tập Toán 7 hay nhất | Giải SBT Toán 7 Tập 1, Tập 2 | Giải SBT Toán lớp 7 Kết nối tri thức | SBT Toán 7 KNTT
  15. Giải sgk Toán 7 Kết nối tri thức | Giải Toán 7 | Giải Toán lớp 7 | Giải bài tập Toán 7 hay nhất | Giải Toán 7 Tập 1, Tập 2 Kết nối tri thức
  16. Sách bài tập Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  17. Giải SGK Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  18. 20 câu Trắc nghiệm Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  19. Lý thuyết Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  20. 21 Bài tập Cộng, trừ, nhân, chia số hữu tỉ có đáp án – Toán 7
  21. Bài giảng điện tử Cộng, trừ, nhân, chia số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7
  22. Giáo án Toán 7 Bài 2 (Kết nối tri thức 2023): Cộng, trừ, nhân, chia số hữu tỉ
  23. Vở thực hành Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  24. Sách bài tập Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  25. Giải SGK Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  26. Giáo án Toán 7 (Kết nối tri thức 2023): Luyện tập chung trang 14
  27. Vở thực hành Toán 7 (Kết nối tri thức): Luyện tập chung trang 11, 12, 13
  28. Giải SGK Toán 7 (Kết nối tri thức): Luyện tập chung trang 14
  29. 20 câu Trắc nghiệm Lũy thừa với số mũ tự nhiên của 1 số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  30. Lý thuyết Lũy thừa với số mũ tự nhiên của một số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  31. Vở thực hành Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ
  32. 20 Bài tập Lũy thừa với số mũ tự nhiên của một số hữu tỉ có đáp án – Toán 7
  33. Sách bài tập Toán 7 Bài 3 (Kết nối tri thức): Luỹ thừa với số mũ tự nhiên của một số hữu tỉ
  34. Giải SGK Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ
  35. 22 câu Trắc nghiệm Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  36. Lý thuyết Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  37. Bài giảng điện tử Thứ tự thực hiện các phép tính. Quy tắc chuyển vế | Kết nối tri thức Giáo án PPT Toán 7
  38. Giáo án Toán 7 Bài 4 (Kết nối tri thức 2023): Thứ tự thực hiện các phép tính. quy tắc chuyển vế
  39. Vở thực hành Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện phép tính. Quy tắc chuyển vế
  40. 20 Bài tập Thứ tự thực hiện các phép tính. Quy tắc chuyển vế có đáp án – Toán 7
  41. Sách bài tập Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  42. Giải SGK Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  43. Giáo án Toán 7 (Kết nối tri thức 2023): Luyện tập chung trang 23
  44. Vở thực hành Toán 7 (Kết nối tri thức): Luyện tập chung trang 19, 20, 21
  45. Toán lớp 7 (Kết nối tri thức) Luyện tập chung trang 23
  46. 32 câu Trắc nghiệm Toán lớp 7 Chương 1 (Kết nối tri thức) có đáp án: Số hữu tỉ
  47. Lý thuyết Toán 7 Chương 1 (Kết nối tri thức 2023): Số hữu tỉ hay, chi tiết
  48. Giáo án Toán 7 (Kết nối tri thức 2023): Bài tập cuối chương 1
  49. Vở thực hành Toán 7 (Kết nối tri thức): Bài ôn tập cuối chương 1
  50. 24 Bài tập Toán 7 Chương 1 có đáp án: Số hữu tỉ
  51. Sách bài tập Toán 7 (Kết nối tri thức): Ôn tập chương 1 trang 20, 21
  52. Giải SGK Toán 7 (Kết nối tri thức): Bài tập cuối chương 1

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán