Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 7

20 Bài tập Tập hợp các số hữu tỉ có đáp án – Toán 7

By admin 17/10/2023 0

Bài tập Toán lớp 7 Bài 1: Tập hợp các số hữu tỉ

A. Bài tập Tập hợp các số hữu tỉ

1. Bài tập trắc nghiệm

Câu 1. Khẳng định nào trong các khẳng định sau là đúng?

A. Số 0 không phải là số hữu tỉ;

B. Số 0 là số hữu tỉ âm;

C. Số 0 là số hữu tỉ dương;

D. Số 0 là số hữu tỉ nhưng không phải là số hữu tỉ dương cũng không phải là số hữu tỉ âm.

Hướng dẫn giải

Đáp án đúng là: D

Số 0 là số hữu tỉ nhưng không phải là số hữu tỉ dương cũng không phải là số hữu tỉ âm.

Vậy ta chọn phương án D.

Câu 2. Điểm A trong hình dưới đây biểu diễn số hữu tỉ nào?

A. 23 ;

B. –23 ;

C. −13 ;

D. – 1.

Hướng dẫn giải

Đáp án đúng là: B

Hình trên chia các đoạn thẳng đơn vị (chẳng hạn từ 0 đến 1) thành 3 đoạn bằng nhau, lấy một đoạn đó làm đơn vị mới thì đơn vị mới bằng 13 đơn vị cũ.

Điểm A nằm bên trái điểm 0 và cách điểm 0 một đoạn bằng 2 đơn vị mới.

Do đó điểm A biểu diễn số −23 .

Mà −23=2−3.

Suy ra điểm A biểu diễn số 2−3.

Vậy ta chọn phương án B.

Câu 3. Số hữu tỉ x6 không thỏa mãn điều kiện −12<x6<12 là:

A. −16 ;

B. 16 ;

C. 13 ;

D. −23 ;

Hướng dẫn giải

Đáp án đúng là: D

Ta có:−12<x6<12 nên −36<x6<36 .

Mà x6 là số hữu tỉ nên x ∈ ℤ.

Suy ra x6∈−26;  −16;  0;  16; 26 .

Do đó:

• Phương án A số −16  thỏa mãn điều kiện nên A là sai.

• Phương án B số 16  thỏa mãn điều kiện nên B là sai.

• Phương án C số 13=26 thỏa mãn điều kiện nên C là sai.

• Phương án D số −23=−46 không thỏa mãn điều kiện nên D là đúng.

Vậy ta chọn phương án D.

2. Bài tập tự luận

Bài 1. Thay ?  bằng kí hiệu ∈, ∉ thích hợp.       

a) 2023 ? ℚ;

b) −20222023   ? ℤ;

c) −42  ? ℕ;

d) 1,23 ? ℚ.

Hướng dẫn giải

a) 2023? ℚ

Ta có: 2023 là số tự nhiên viết được dưới dạng 20231 nên đây là số hữu tỉ.

Do đó 2023 ∈  ℚ.

b) −20222023   ? ℤ

Ta có: −20222023 là số hữu tỉ, không phải là số nguyên.

Do đó −20222023   ∉ ℤ.

c) −42  ? ℕ

Ta có: −42 = –2  là số nguyên âm, không phải là số tự nhiên.

Do đó −42  ∉  ℕ.

d) 1,23 ? ℚ.

Ta có: 1,23 = 123100 nên số 1,23 viết được dưới dạng phân số.

Do đó đây là số hữu tỉ.

Vậy 1,23 ∈ ℚ.

Bài 2.

a) Trong các phân số sau, phân số nào biểu diễn số hữu tỉ −23 ?

−−812;4−6;−69;−2233.

 

b) Tìm số đối của mỗi số sau: 1,3−58;−112;1−5.

Hướng dẫn giải

a) Ta có: −−812=812=8:412:4=23≠−23;

4−6=4:−2−6:−2=−23;

−69=−6:39:3=−23;

−2233=−2233=−22:1133:11=−23.

Vậy các phân số biểu diễn số hữu tỉ −23 là: 4−6;−69;−2233.

b) Số đối của số 1,3 là ‒1,3;

Số đối của số −58 là 58 .

Số đối của số −112 là 112 .

Số đối của số  1−5 là 15 .

Bài 3.

a) Các điểm A, B, C, D trong hình dưới biểu diễn số hữu tỉ nào?

b) Biểu diễn các số hữu tỉ  −112;  1,5; 5−2;−−72trên trục số.

Hướng dẫn giải

a)

Dựa vào trục số ta thấy:

Mỗi đoạn thẳng đơn vị (chẳng hạn từ 0 đến 1) được chia thành 7 phần bằng nhau, lấy một đoạn làm đơn vị mới (đơn vị mới bằng 17 đơn vị cũ).

– Xét các điểm nằm bên trái điểm 0:

• Điểm A cách điểm 0 một đoạn bằng 9 đơn vị mới nên điểm A biểu diễn số − 97 .

• Điểm B cách điểm 0 một đoạn bằng 3 đơn vị mới nên điểm B biểu diễn số − 37.

– Xét các điểm nằm bên phải điểm 0:

• Điểm C cách điểm 0 một đoạn bằng 2 đơn vị mới nên điểm C biểu diễn số 27.

• Điểm D cách điểm 0 một đoạn bằng 6 đơn vị mới nên điểm D biểu diễn số 67.

Vậy các điểm A, B, C, D lần lượt biểu diễn các số − 97;  − 37;  27;  67.

b) Biểu diễn các số hữu tỉ −112;  1,5; 5−2;−−72 trên trục số.

+) Biểu diễn số −112:

• Ta có: −112=−32

• Chia đoạn thẳng đơn vị (chẳng hạn đoạn từ điểm 0 tới điểm 1) thành 2 phần bằng nhau, ta được đoạn đơn vị mới bằng 12 đơn vị cũ.

Số hữu tỉ –32 được biểu diễn bởi điểm A nằm bên trái điểm 0 và cách điểm 0 một đoạn bằng 3 đơn vị mới (Hình vẽ).

+) Biểu diễn số 1,5:

• Ta có: 1,5 = 32.

• Số hữu tỉ 32 được biểu diễn bởi điểm B nằm bên phải điểm 0 và cách điểm 0 một đoạn bằng 3 đơn vị mới (Hình vẽ).

+) Biểu diễn số 5−2:

• Ta có:5−2=−52.

• Số hữu tỉ −52 được biểu diễn bởi điểm C nằm bên trái điểm 0 và cách điểm 0 một đoạn bằng 5 đơn vị mới (Hình vẽ).

+) Biểu diễn số −−72:

• Ta có: −−72=72.

• Số hữu tỉ 72 được biểu diễn bởi điểm D nằm bên phải điểm 0 và cách điểm 0 một đoạn bằng 7 đơn vị mới (Hình vẽ).

Ta có các điểm A, B, C, D biểu diễn các số −112;  1,5; 5−2;−−72  trên trục số như hình vẽ sau:

Bài 4.

a) Trong các số hữu tỉ sau, số nào là số hữu tỉ dương, số nào là số hữu tỉ âm, số nào không là số hữu tỉ dương cũng không là số hữu tỉ âm?

−119;  1,125;  −213;0;37.

 

b) Hãy sắp xếp các số trên theo thứ tự tăng dần.

Hướng dẫn giải

a) Trong các số hữu tỉ −119;  1,125;  −213;0;37. thì có:

• Các số hữu tỉ dương là: 1,125;37.

• Các số hữu tỉ âm là:−119;−213.

• Số hữu tỉ không là số hữu tỉ dương cũng không là số hữu tỉ âm là: 0.

b)

• So sánh các số hữu tỉ dương: 1,125;37.

Ta có: 1,125 = 11251000=1125:1251000:125=98;

Vì 3 < 7 và 7 > 0 nên 37<77 hay 37<1

Vì 9 > 8 và 8 > 0 nên 98>88 hay 98>1 .

Do đó 37<98          (1)

• So sánh các số hữu tỉ âm: −119;−213.

Ta sẽ đi so sánh số đối của hai số trên là 119 và 213:

Ta có: 119=129.

Ta thấy phần nguyên của số 129 bằng 1; phần nguyên của số 213bằng 2

Mà 1 < 2 nên 129<213.

Do đó −129>−213.

Hay −119>−213.  (2)

Mặt khác:

Số 0 luôn lớn hơn các số hữu tỉ âm và số 0 luôn nhỏ hơn các số hữu tỉ dương (3).

Từ (1), (2) và (3) ta có: −213<−119<0<37<98.

Vậy sắp xếp các số theo thứ tự tăng dần là: −213;−119;0;37;98.

 Bài 5. Bảng dưới đây thể hiện nhiệt độ thấp nhất của một số ngày vào tháng 12/2021 tại Moskva (Nga):

Ngày

08/12/2021

09/12/2021

10/12/2021

11/12/2021

12/12/2021

Nhiệt độ thấp nhất

(°C)

–8

–14

–16

–5

–3

(Nguồn: https://weather.com)

Trong những ngày trên, ngày nào là ngày tại Moskva ấm nhất? Lạnh nhất? Tại sao?

Hướng dẫn giải

Ta có: –16 < –14 < –8 < –5 < –3.

Vì nhiệt độ càng thấp thì càng lạnh, nhiệt độ càng cao thì càng ấm.

Do đó, tại Moskva, vào ngày 12/12/2021 sẽ ấm nhất và vào ngày 01/12/2021 sẽ lạnh nhất.

B. Lý thuyết Tập hợp các số hữu tỉ

1. Số hữu tỉ

– Số hữu tỉ là số được viết dưới dạng phân số ab với a, b ∈ ℤ, b ¹ 0.

– Các phân số bằng nhau biểu diễn cùng một số hữu tỉ.

– Tập hợp các số hữu tỉ được kí hiệu là ℚ.

Ví dụ:

• Các số 45;−910;3−8 là các số hữu tỉ.

• Các số 5; −3,4; 325 là các số hữu tỉ vì:

5 = 51 = 102 = …;

−3,4 = −3410 = −175 = …;

325= 175 = 3410 = …

– Chú ý: Mỗi số nguyên là một số hữu tỉ.

2. Thứ tự trong tập hợp các số hữu tỉ

– Với hai số hữu tỉ bất kì x, y ta luôn có: hoặc x = y hoặc x < y hoặc x > y.

– Số hữu tỉ lớn hơn 0 gọi là số hữu tỉ dương.

Số hữu tỉ bé hơn 0 gọi là số hữu tỉ âm.

Số hữu tỉ 0 không là số hữu tỉ dương cũng không là số hữu tỉ âm.

Ví dụ: So sánh các cặp số hữu tỉ sau:

a) −0,8 và −15;

b) −823 và 0.

Hướng dẫn giải

a) −0,8 và −15

Ta có −0,8 = −810 và  −15=−210.

Vì −8 < −2 và 10 > 0 nên −810<−210.

Vậy – 0,8 < −15.

b) −823 và 0

Ta có −823= −263 và 0 = 03.

Vì −26 < 0 và 3 > 0 nên  −263<03.

Vậy −823 < 0.

Chú ý: Số hữu tỉ dương luôn luôn lớn hơn số hữu tỉ âm.

Ví dụ: Hãy sắp xếp các số hữu tỉ sau đây theo thứ tự tăng dần: 15,− 25,37,− 13,0.

Hướng dẫn giải

• Ta so sánh −25; −13và 0.

Có:   −25  =  −615; −13 = −515 và 0=015.

Vì –6 < –5 < 0 nên  −615<−515 < 015.

Do đó  −25<−13<0.         (1)

• Ta so sánh 15 với 37.

Có: 15 = 735 và 37 = 1535.

Vì 7 < 15 nên 735 < 1535.

Do đó 15<37.         (2)

Lại có số hữu tỉ dương luôn lớn hơn số hữu tỉ âm.  (3)

Từ (1), (2) và (3) ta có:  −25<−13<0<  15  <37.

Vậy sắp xếp các số theo thứ tự tăng dần là: − 25; − 13; 0; 15; 37 .

3. Biểu diễn số hữu tỉ trên trục số

– Trên trục số, mỗi số hữu tỉ được biểu diễn bởi một điểm. Điểm biểu diễn số hữu tỉ x được gọi là điểm x.

– Với hai số hữu tỉ bất kì x, y, nếu x < y thì trên trục số nằm ngang, điểm x ở bên trái điểm y.

Ví dụ:

+ Để biểu diễn số hữu tỉ 54 ta làm như sau:

• Chia đoạn thẳng đơn vị thành bốn phần bằng nhau, ta được đoạn thẳng mới bằng 14 đơn vị cũ.

• Số hữu tỉ 54 được biểu diễn bởi điểm A nằm bên phải điểm 0 và cách điểm 0 một đoạn bằng 5 đơn vị mới như trong hình dưới.

+ Để biểu diễn số hữu tỉ 4−3 trên trục số ta làm như sau:

• Viết 2−3 dưới dạng phân số với mẫu số dương 2−3=−23.

• Chia đoạn thẳng đơn vị thành ba phần bằng nhau, ta được đoạn đơn vị mới bằng 13 đơn vị cũ.

• Số hữu tỉ 2−3 được biểu diễn bởi điểm B nằm bên trái điểm 0 và cách điểm 0 một đoạn bằng 2 đơn vị mới như hình dưới.

4. Số đối của một số hữu tỉ

– Hai số hữu tỉ có điểm biểu diễn trên trục số cách đều và nằm về hai phía điểm gốc O là hai số đối nhau, số này gọi là số đối của số kia.

– Số đối của số hữu tỉ x kí hiệu là −x.

Ví dụ:

−58 là số đối của 58;58 là số đối của −58

0,123 là số đối của −0,123; −0,123 là số đối của 0,123.

Số đối của 112  (có 112=32) là −32 và ta viết là −112 .

Chú ý:

– Mọi số hữu tỉ đều có một số đối.

– Số đối của số 0 là số 0.

– Với hai số hữu tỉ âm, số nào có số đối lớn hơn thì số đó nhỏ hơn.

Ví dụ: Tìm số đối của mỗi số sau: 1219;−16;  –2,22; 0; 234.

Hướng dẫn giải

Số đối của số 1219  là số –1219

Số đối của số −16 là số 16

Số đối của số –2,22 là số 2,22.

Số đối của số 0 là số 0.

Số đối của số 234=114là số –114ta viết là −234.

Tags : Tags Đại số   Giải bài tập   Tập hợp các số hữu tỉ   toán 7
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giải sgk Toán 7 Chân trời sáng tạo | Giải Toán lớp 7 | Giải bài tập Toán 7 Tập 1, Tập 2 hay nhất

Next post

Tổng hợp lí thuyết và bài tập hay về Cung và góc lượng giác có giải chi tiết

Bài liên quan:

20 câu Trắc nghiệm Tập hợp các số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7

Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

20 Bài tập Tập hợp các số hữu tỉ có đáp án – Toán 7

Giải sgk tất cả các môn lớp 7 Kết nối tri thức | Giải sgk các môn lớp 7 chương trình mới

Trọn bộ Trắc nghiệm Toán 7 Kết nối tri thức có đáp án

Giải sgk Toán 7 (cả 3 bộ sách) | Giải bài tập Toán 7 (hay, chi tiết)

Bài giảng điện tử Tập hợp các số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7

Bài giảng điện tử Toán 7 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 7

Leave a Comment Hủy

Mục lục

  1. 20 câu Trắc nghiệm Tập hợp các số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  2. Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  3. 20 Bài tập Tập hợp các số hữu tỉ có đáp án – Toán 7
  4. Giải sgk tất cả các môn lớp 7 Kết nối tri thức | Giải sgk các môn lớp 7 chương trình mới
  5. Trọn bộ Trắc nghiệm Toán 7 Kết nối tri thức có đáp án
  6. Giải sgk Toán 7 (cả 3 bộ sách) | Giải bài tập Toán 7 (hay, chi tiết)
  7. Bài giảng điện tử Tập hợp các số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7
  8. Bài giảng điện tử Toán 7 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 7
  9. Giáo án Toán 7 Bài 1 (Kết nối tri thức 2023): Tập hợp các số hữu tỉ
  10. Giáo án Toán 7 Kết nối tri thức (cả năm) mới nhất 2023
  11. Vở thực hành Toán 7 Kết nối tri thức | Giải VTH Toán 7 Tập 1, Tập 2 hay, chi tiết
  12. Vở thực hành Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  13. Lý thuyết Toán lớp 7 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 7 | Kết nối tri thức
  14. Sách bài tập Toán 7 Kết nối tri thức | SBT Toán 7 | Giải SBT Toán 7 | Giải sách bài tập Toán 7 hay nhất | Giải SBT Toán 7 Tập 1, Tập 2 | Giải SBT Toán lớp 7 Kết nối tri thức | SBT Toán 7 KNTT
  15. Giải sgk Toán 7 Kết nối tri thức | Giải Toán 7 | Giải Toán lớp 7 | Giải bài tập Toán 7 hay nhất | Giải Toán 7 Tập 1, Tập 2 Kết nối tri thức
  16. Sách bài tập Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  17. Giải SGK Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  18. 20 câu Trắc nghiệm Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  19. Lý thuyết Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  20. 21 Bài tập Cộng, trừ, nhân, chia số hữu tỉ có đáp án – Toán 7
  21. Bài giảng điện tử Cộng, trừ, nhân, chia số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7
  22. Giáo án Toán 7 Bài 2 (Kết nối tri thức 2023): Cộng, trừ, nhân, chia số hữu tỉ
  23. Vở thực hành Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  24. Sách bài tập Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  25. Giải SGK Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  26. Giáo án Toán 7 (Kết nối tri thức 2023): Luyện tập chung trang 14
  27. Vở thực hành Toán 7 (Kết nối tri thức): Luyện tập chung trang 11, 12, 13
  28. Giải SGK Toán 7 (Kết nối tri thức): Luyện tập chung trang 14
  29. 20 câu Trắc nghiệm Lũy thừa với số mũ tự nhiên của 1 số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  30. Lý thuyết Lũy thừa với số mũ tự nhiên của một số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  31. Vở thực hành Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ
  32. 20 Bài tập Lũy thừa với số mũ tự nhiên của một số hữu tỉ có đáp án – Toán 7
  33. Sách bài tập Toán 7 Bài 3 (Kết nối tri thức): Luỹ thừa với số mũ tự nhiên của một số hữu tỉ
  34. Giải SGK Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ
  35. 22 câu Trắc nghiệm Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  36. Lý thuyết Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  37. Bài giảng điện tử Thứ tự thực hiện các phép tính. Quy tắc chuyển vế | Kết nối tri thức Giáo án PPT Toán 7
  38. Giáo án Toán 7 Bài 4 (Kết nối tri thức 2023): Thứ tự thực hiện các phép tính. quy tắc chuyển vế
  39. Vở thực hành Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện phép tính. Quy tắc chuyển vế
  40. 20 Bài tập Thứ tự thực hiện các phép tính. Quy tắc chuyển vế có đáp án – Toán 7
  41. Sách bài tập Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  42. Giải SGK Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  43. Giáo án Toán 7 (Kết nối tri thức 2023): Luyện tập chung trang 23
  44. Vở thực hành Toán 7 (Kết nối tri thức): Luyện tập chung trang 19, 20, 21
  45. Toán lớp 7 (Kết nối tri thức) Luyện tập chung trang 23
  46. 32 câu Trắc nghiệm Toán lớp 7 Chương 1 (Kết nối tri thức) có đáp án: Số hữu tỉ
  47. Lý thuyết Toán 7 Chương 1 (Kết nối tri thức 2023): Số hữu tỉ hay, chi tiết
  48. Giáo án Toán 7 (Kết nối tri thức 2023): Bài tập cuối chương 1
  49. Vở thực hành Toán 7 (Kết nối tri thức): Bài ôn tập cuối chương 1
  50. 24 Bài tập Toán 7 Chương 1 có đáp án: Số hữu tỉ
  51. Sách bài tập Toán 7 (Kết nối tri thức): Ôn tập chương 1 trang 20, 21
  52. Giải SGK Toán 7 (Kết nối tri thức): Bài tập cuối chương 1

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán