Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 7

Giải SGK Toán 7 Bài 2 (Chân trời sáng tạo): Số thực. Giá trị tuyệt đối của một số thực

By admin 18/10/2023 0

Giải bài tập Toán lớp 7 Chương 2 Bài 2: Số thực. Giá trị tuyệt đối của một số thực

Video giải Toán 7 Bài 2: Số thực. Giá trị tuyệt đối của một số thực – Chân trời sáng tạo

1. Số thực và tập hợp các số thực

Giải Toán 7 trang 35 Tập 1

HĐ 1 trang 35 Toán lớp 7: Trong các số sau, số nào là số hữu tỉ, số nào là số vô tỉ?

23;3,(45);2;−45;−3;0;π.

Phương pháp giải:

–          Mỗi số thập phân vô hạn không tuần hoàn là biểu diễn thập phân của một số, số đó gọi là số vô tỉ.

–          Số hữu tỉ được viết dưới dạng ab, trong đó a và b là các số nguyên, b khác 0.

Lời giải:

Ta có: 3,(45)=3811; −45=−451;0=01 do đó:

Các số hữu tỉ là: 23;3,(45);−45;0.

Các số vô tỉ là: 2;−3;π.

Chú ý:

Số thập phân vô hạn tuần hoàn cũng là số hữu tỉ.

Thực hành 1 trang 35 Toán lớp 7: Các phát biểu sau đúng hay sai? Nếu sai, hãy phát biểu lại cho đúng.

a)3∈Q;b)3∈Rc)23∉Rd)−9∈R

Phương pháp giải:

–          Số hữu tỉ được viết dưới dạng ab, trong đó a và b là các số nguyên, b khác 0. Kí hiệu là Q.

–          Số thực bao gồm cả số vô tỉ và số hữu tỉ. Kí hiệu là R.

Lời giải:

a)      3∈Q sai.

Sửa lại: 3∉Q

b)      3∈R đúng.

c)      23∉R sai.

Sửa lại: 23∈R

d)      −9∈R đúng.

2. Thứ tự trong tập hợp các số thực

HĐ 2 trang 35 Toán lớp 7: Hãy so sánh các số thập phân sau đây: 3,14; 3,14(15); 3,14159…

Phương pháp giải:

Để so sánh các số thập phân ta so sánh lần lượt các hàng từ trái qua phải với nhau.

Lời giải:

Ta có: 3,14 < 3,14159…< 3,141515(15)

Vậy 3,14 < 3,14159…< 3,14(15)

Giải Toán 7 trang 36 Tập 1

Thực hành 2 trang 36 Toán lớp 7: So sánh hai số thực:

a) 4,(56) và 4,56279;

b) -3,(65) và -3,6491;

c) 0,(21) và 0,2(12);

d) 2 và 1,42.

Phương pháp giải:

Ta có thể so sánh hai số thực bằng cách so sánh hai số thập phân (hữu hạn hoặc vô hạn) biểu diễn chúng

Lời giải:

a) Ta có: 4,(56)= 4,5656….

Vì 4,5656… > 4,56279 nên 4,(56) > 4,56279

b) Ta có:

-3,(65) = -3,6565…

Vì 3,6565… 3,6491 nên -3,6565…> -3,6491. Do đó, -3,(65) < -3,6491;

c) 0,(21)=733 và 0,2(12)= 733 nên 0,(21) = 0,2(12).

d) 2=0,41421…< 1,42.

Vận dụng 1 trang 36 Toán lớp 7: Cho một hình vuông có diện tích 5 m2. Hãy so sánh độ dài a của cạnh hình vuông đó với độ dài b = 2,361 m.

Phương pháp giải:

–          Tính cạnh hình vuông: a=S

–          So sánh a và b.

Lời giải:

Cạnh hình vuông là: a=5=2,236…(m)

Ta có: 2,236…<2,361 nên a<b.

3. Trục số thực

HĐ 3 trang 36 Toán lớp 7: Quan sát hình vẽ bên và cho biết độ dài của đoạn thẳng OA bằng bao nhiêu. Độ dài OA có là số hữu tỉ hay không?

Phương pháp giải:

OA là đường chéo của hình vuông có cạnh là 1 => Độ dài đường chéo.

Lời giải:

Đường chéo của hình vuông có độ dài đường chéo là 1 bằng 2.

2 là số vô tỉ.

Thực hành 3 trang 36 Toán lớp 7: Hãy biểu diễn các số thực: −2;−2;−1,5;2;3 trên trục số.

Phương pháp giải:

Mỗi điểm trên trục số biểu diễn một số thực.

Vẽ trục số, các số thực âm nằm bên trái số 0, các số thực dương nằm bên phải số 0.

Lời giải:

Vận dụng 2 trang 36 Toán lớp 7: Không cần vẽ hình, hãy nêu nhận xét về vị trí của hai số 2;32 trên trục số.

Phương pháp giải:

Trên trục số, số nhỏ hơn sẽ nằm bên trái số lớn hơn

Lời giải:

Do 2=1,41…<32=1,5 nên số 2 nằm bên trái số 32.

4. Số đối của một số thực

Giải Toán 7 trang 37 Tập 1

HĐ 4 trang 37 Toán lớp 7: Gọi A và A’ lần lượt là hai điểm biểu diễn hai số 4,5 và -4,5 trên trục số. So sánh OA và OA’.

Phương pháp giải:

Quan sát hình vẽ để tính OA và OA’ sau đó so sánh.

Lời giải:

Ta có: OA = 4,5 và OA’=4,5 nên OA=OA’.

Thực hành 4 trang 37 Toán lớp 7: Tìm số đối của các số thực sau: 5,12;π;−13.

Phương pháp giải:

Số đối của số thực x kí hiệu là –x

Lời giải:

Số đối của số: 5,12 là -5,12

Số đối của số: π là −π

Số đối của số: −13 là 13.

Chú ý:

Muốn tìm số đối của một số ta chỉ cần đổi dấu của nó.

Vận dụng 3 trang 37 Toán lớp 7: So sánh các số đối của hai số 2 và 3.

Phương pháp giải:

–          Tìm số đối của hai số trên,

–          So sánh hai số đối vừa tìm được.

Lời giải:

Số đối của hai số 2 và 3 lần lượt là −2 và −3

Do 2<3⇒2<3⇒−2>−3.

Chú ý: Với hai số thực a,b dương. Nếu a > b thì a>b.

5. Giá trị tuyệt đối của một số thực

HĐ 5 trang 37 Toán lớp 7: Trên 2 trục số, so sánh khoảng cách từ điểm 0 đến hai điểm 2 và −2.

Phương pháp giải:

Quan sát hình vẽ và so sánh khoảng cách từ 0 đến hai điểm 2 và −2.

Lời giải:

Ta thấy khoảng cách từ 0 đến điểm 2 bằng 2.

            Khoảng cách từ 0 đến điểm –2 bằng 2

Vậy khoảng cách từ 0 đến hai điểm 2 và −2 bằng nhau.

Thực hành 5 trang 37 Toán lớp 7: Tìm giá trị tuyệt đối của các số thực sau: -3,14; 41; -5; 1,(2); -5.

Phương pháp giải:

|x|=x nếu x>0

|x|=-x nếu x<0

|x|=0 nếu x=0

Lời giải:

|−3,14|=3,14;|41|=41;|−5|=5;|1,(2)|=1,(2);|−5|=5.

Vận dụng 4 trang 37 Toán lớp 7: Có bao nhiêu số thực x thoả mãn |x| = 3?

Phương pháp giải:

Giá trị tuyệt đối của một số thực âm hoặc dương đều là một số hữu tỉ dương.

Lời giải:

Có hai số thực x thỏa mãn là: x=3;x=−3.

Bài tập

Giải Toán 7 trang 38 Tập 1

Bài 1 trang 38 Toán lớp 7: Hãy thay mỗi ? bằng kí hiệu ∈ hoặc ∉ để có phát biểu đúng.

Phương pháp giải:

Z={...;−2;−1;0;1;2;...}

Q={ab;a,b∈Z;b≠0}

Mỗi số thập phân vô hạn không tuần hoàn là biểu diễn thập phân của một số, số đó gọi là số vô tỉ. Kí hiệu là I.

Tập hợp số hữu tỉ R bao gồm các số vô tỉ và hữu tỉ.

Lời giải:

5∈Z;−2∈Q;2∉Q;35∈Q;2,31(45)∉I7,62(38)∈R;0∉I

Bài 2 trang 38 Toán lớp 7: Sắp xếp các số thực sau theo thứ tự từ nhỏ đến lớn:

23;4,1;−2;3,2;π;−34;73.

Phương pháp giải:

Viết các số thực dưới dạng số thập phân rồi so sánh và sắp xếp theo thứ tự từ nhỏ đến lớn.

Lời giải:

Ta có:

 23=0,(6);4,1;−2=−1,414…;3,2;π=3,141…;−34=−0,75;73=2,(3).

Do−1,414…<−0,75<0,(6)<2,(3)<3,141…<3,2<4,1

Nên −2<−34<23<73<π<3,2<4,1.

Bài 3 trang 38 Toán lớp 7: Hãy cho biết tính đúng, sai của các khẳng định sau:

a) 2;3;5 là các số thực.

b) Số nguyên không là số thực.

c) −12;23;−0,45 là các số thực.

d) Số 0 vừa là số hữu tỉ vừa là số vô tỉ.

e) 1; 2; 3; 4 là các số thực.

Phương pháp giải:

Q={ab;a,b∈Z;b≠0}

Mỗi số thập phân vô hạn không tuần hoàn là biểu diễn thập phân của một số, số đó gọi là số vô tỉ. Kí hiệu là I.

Tập hợp số hữu tỉ R bao gồm các số vô tỉ và hữu tỉ.

Lời giải:

a) 2;3;5 là các số thực => Đúng

b) Số nguyên không là số thực => Sai (Do Tất cả các số nguyên đều là số thực)

c) −12;23;−0,45 là các số thực => Đúng

d) Số 0 vừa là số hữu tỉ vừa là số vô tỉ => Sai (Do số 0 không là số vô tỉ)

e) 1; 2; 3; 4 là các số thực => Đúng.

Chú ý:

Số thực là tập hợp số lớn nhất, bao gồm tất cả các tập hợp số đã được học.

Bài 4 trang 38 Toán lớp 7: Hãy thay ? bằng các chữ số thích hợp.

Phương pháp giải:

Sử dụng quy tắc so sánh hai số thập phân rồi điền số vào dấu “?” .

Lời giải:

a)      2,71467>2,70932

b)      5,17934<5,17946 nên -5,17934>-5,17946

Bài 5 trang 38 Toán lớp 7: Tìm số đối của các số sau:

 −5;12,(3);0,4599;10;−π.

Phương pháp giải:

Số đối của số x kí hiệu là −x.

Muốn tìm số đối của một số thực bất kì ta chỉ việc đổi dấu của chúng.

Lời giải:

Số đối của các số −5;12,(3);0,4599;10;−π lần lượt là:

5;−12,(3);−0,4599;−10;π.

Bài 6 trang 38 Toán lớp 7: Tìm giá trị tuyệt đối của các số sau:

 −7;52,(1);0,68;−32;2π.

Phương pháp giải:

|x|=x nếu x>0

|x|=-x nếu x<0

|x|=0 nếu x=0.

Lời giải:

|−7|=7;|52,(1)|=52,(1);|0,68|=0,68;|−32|=32;|2π|=2π.

Bài 7 trang 38 Toán lớp 7: Sắp xếp theo thứ tự từ nhỏ đến lớn giá trị tuyệt đối của các số sau:

−3,2;2,13;−2;−37.

Phương pháp giải:

–          Tính giá trị tuyệt đối của các số trên

–          So sánh rồi sắp xếp theo thứ tự từ nhỏ đến lớn.

Chú ý: Cách tính giá trị tuyệt đối

|x|=x nếu x>0

|x|=-x nếu x<0

|x|=0 nếu x=0

Lời giải:

|−3,2|=3,2;|2,13|=2,13;|−2|=2=1,41..;|−37|=37=0,42…

Do 0,42<1,41…<2,13<3,2 nên:

|−37|<|−2|<|2,13|<|−3,2|.

Bài 8 trang 38 Toán lớp 7: Tìm giá trị của x và y biết rằng: 

|x|=5 và |y−2|=0.

Phương pháp giải:

Tìm x, biết: |x|=a

TH1: a≠0 thì x=a hoặc x=−a

TH2: a=0 thì x=0.

Lời giải:

|x|=5⇒x=5 hoặc x=−5

|y−2|=0⇒y−2=0⇒y=2.

Bài 9 trang 38 Toán lớp 7: Tính giá trị của biểu thức:

 M=|−9|.

Phương pháp giải:

–          Tính trị tuyệt đối sau đó tính căn bặc hai.

–          Cách tính giá trị tuyệt đối

|x|=x nếu x>0

|x|=-x nếu x<0

|x|=0 nếu x=0

Lời giải:

Do |−9|=9 nên ta có:

M=|−9|=9=3

Xem thêm các bài giải SGK Toán lớp 7 Chân trời sáng tạo hay, chi tiết:

Bài 1: Số vô tỉ. Căn bậc hai số học

Bài 3: Làm tròn số và ước lượng kết quả

Bài tập cuối chương 2

Bài 1: Hình hộp chữ nhật – Hình lập phương

Tags : Tags Giải bài tập   toán 7
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Chuyên đề hệ thức lượng trong tam giác vuông

Next post

Giải Toán 8 Bài 1: Tứ giác

Bài liên quan:

20 câu Trắc nghiệm Tập hợp các số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7

Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

20 Bài tập Tập hợp các số hữu tỉ có đáp án – Toán 7

Giải sgk tất cả các môn lớp 7 Kết nối tri thức | Giải sgk các môn lớp 7 chương trình mới

Trọn bộ Trắc nghiệm Toán 7 Kết nối tri thức có đáp án

Giải sgk Toán 7 (cả 3 bộ sách) | Giải bài tập Toán 7 (hay, chi tiết)

Bài giảng điện tử Tập hợp các số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7

Bài giảng điện tử Toán 7 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 7

Leave a Comment Hủy

Mục lục

  1. 20 câu Trắc nghiệm Tập hợp các số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  2. Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  3. 20 Bài tập Tập hợp các số hữu tỉ có đáp án – Toán 7
  4. Giải sgk tất cả các môn lớp 7 Kết nối tri thức | Giải sgk các môn lớp 7 chương trình mới
  5. Trọn bộ Trắc nghiệm Toán 7 Kết nối tri thức có đáp án
  6. Giải sgk Toán 7 (cả 3 bộ sách) | Giải bài tập Toán 7 (hay, chi tiết)
  7. Bài giảng điện tử Tập hợp các số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7
  8. Bài giảng điện tử Toán 7 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 7
  9. Giáo án Toán 7 Bài 1 (Kết nối tri thức 2023): Tập hợp các số hữu tỉ
  10. Giáo án Toán 7 Kết nối tri thức (cả năm) mới nhất 2023
  11. Vở thực hành Toán 7 Kết nối tri thức | Giải VTH Toán 7 Tập 1, Tập 2 hay, chi tiết
  12. Vở thực hành Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  13. Lý thuyết Toán lớp 7 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 7 | Kết nối tri thức
  14. Sách bài tập Toán 7 Kết nối tri thức | SBT Toán 7 | Giải SBT Toán 7 | Giải sách bài tập Toán 7 hay nhất | Giải SBT Toán 7 Tập 1, Tập 2 | Giải SBT Toán lớp 7 Kết nối tri thức | SBT Toán 7 KNTT
  15. Giải sgk Toán 7 Kết nối tri thức | Giải Toán 7 | Giải Toán lớp 7 | Giải bài tập Toán 7 hay nhất | Giải Toán 7 Tập 1, Tập 2 Kết nối tri thức
  16. Sách bài tập Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  17. Giải SGK Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  18. 20 câu Trắc nghiệm Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  19. Lý thuyết Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  20. 21 Bài tập Cộng, trừ, nhân, chia số hữu tỉ có đáp án – Toán 7
  21. Bài giảng điện tử Cộng, trừ, nhân, chia số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7
  22. Giáo án Toán 7 Bài 2 (Kết nối tri thức 2023): Cộng, trừ, nhân, chia số hữu tỉ
  23. Vở thực hành Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  24. Sách bài tập Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  25. Giải SGK Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  26. Giáo án Toán 7 (Kết nối tri thức 2023): Luyện tập chung trang 14
  27. Vở thực hành Toán 7 (Kết nối tri thức): Luyện tập chung trang 11, 12, 13
  28. Giải SGK Toán 7 (Kết nối tri thức): Luyện tập chung trang 14
  29. 20 câu Trắc nghiệm Lũy thừa với số mũ tự nhiên của 1 số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  30. Lý thuyết Lũy thừa với số mũ tự nhiên của một số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  31. Vở thực hành Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ
  32. 20 Bài tập Lũy thừa với số mũ tự nhiên của một số hữu tỉ có đáp án – Toán 7
  33. Sách bài tập Toán 7 Bài 3 (Kết nối tri thức): Luỹ thừa với số mũ tự nhiên của một số hữu tỉ
  34. Giải SGK Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ
  35. 22 câu Trắc nghiệm Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  36. Lý thuyết Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  37. Bài giảng điện tử Thứ tự thực hiện các phép tính. Quy tắc chuyển vế | Kết nối tri thức Giáo án PPT Toán 7
  38. Giáo án Toán 7 Bài 4 (Kết nối tri thức 2023): Thứ tự thực hiện các phép tính. quy tắc chuyển vế
  39. Vở thực hành Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện phép tính. Quy tắc chuyển vế
  40. 20 Bài tập Thứ tự thực hiện các phép tính. Quy tắc chuyển vế có đáp án – Toán 7
  41. Sách bài tập Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  42. Giải SGK Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  43. Giáo án Toán 7 (Kết nối tri thức 2023): Luyện tập chung trang 23
  44. Vở thực hành Toán 7 (Kết nối tri thức): Luyện tập chung trang 19, 20, 21
  45. Toán lớp 7 (Kết nối tri thức) Luyện tập chung trang 23
  46. 32 câu Trắc nghiệm Toán lớp 7 Chương 1 (Kết nối tri thức) có đáp án: Số hữu tỉ
  47. Lý thuyết Toán 7 Chương 1 (Kết nối tri thức 2023): Số hữu tỉ hay, chi tiết
  48. Giáo án Toán 7 (Kết nối tri thức 2023): Bài tập cuối chương 1
  49. Vở thực hành Toán 7 (Kết nối tri thức): Bài ôn tập cuối chương 1
  50. 24 Bài tập Toán 7 Chương 1 có đáp án: Số hữu tỉ
  51. Sách bài tập Toán 7 (Kết nối tri thức): Ôn tập chương 1 trang 20, 21
  52. Giải SGK Toán 7 (Kết nối tri thức): Bài tập cuối chương 1

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán