Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 7

Lý thuyết Phép cộng, phép trừ đa thức một biến (Cánh diều 2023) hay, chi tiết | Toán lớp 7

By admin 23/10/2023 0

Lý thuyết Toán lớp 7 Bài 3:Phép cộng, phép trừ đa thức một biến

A. Lý thuyết

1. Phép cộng đa thức một biến

– Để cộng hai đa thức một biến (theo cột dọc), ta có thể làm như sau:

+ Thu gọn mỗi đa thức và sắp xếp hai đa thức đó cùng theo số mũ giảm dần (hoặc tăng dần) của biến;

+ Đặt hai đơn thức có cùng số mũ của biến ở cùng cột;

+ Cộng hai đơn thức trong từng cột, ta có tổng cần tìm.

– Chú ý: Khi cộng đa thức theo cột dọc, nếu một đa thức khuyết số mũ nào của biến thì khi viết đa thức đó, ta bỏ trống cột tương ứng với số mũ trên.

Ví dụ: Cho hai đa thức: P(x) = x3 – 6x2 + 1 và Q(x) = –3x2 – 2x – 7. Tính tổng P(x) + Q(x) theo cột dọc.

Hướng dẫn giải

Ta thực hiện đặt phép tính cộng hai đa thức như sau:

              + Px=  x3−6x2             +1Qx=         −3x2−2x−7¯ Px+Qx=x3  −9x2−2x−6

Vậy P(x) + Q(x) = x3 – 9x2 – 2x – 6.

– Để cộng hai đa thức một biến (theo hàng ngang), ta có thể làm như sau:

+ Thu gọn mỗi đa thức và sắp xếp hai đa thức đó cùng theo số mũ giảm dần (hoặc tăng dần) của biến;

+ Viết tổng hai đã thức theo hàng ngang;

+ Nhóm các đơn thức có cùng số mũ của biến với nhau;

+ Thực hiện phép tính trong từng nhóm, ta được tổng cần tìm.

Ví dụ: Cho hai đa thức: P(x) = x3 – 6x2 + 1 và Q(x) = –3x2 – 2x – 7. Tính tổng P(x) + Q(x) theo hàng ngang.

Hướng dẫn giải

Ta có:

P(x) + Q(x) = (x3 – 6x2 + 1) + (–3x2 – 2x – 7)

= x3 – 6x2 + 1 – 3x2 – 2x – 7

= x3 + (– 6x2 – 3x2) – 2x + (1 – 7)

= x3 – 9x2 – 2x – 6.

Vậy P(x) + Q(x) = x3 – 9x2 – 2x – 6.

2. Trừ hai đa thức một biến

– Để trừ đa thức P(x) cho đa thức Q(x) (theo cột dọc), ta có thể làm như sau:

+ Thu gọn mỗi đa thức và sắp xếp hai đa thức đó cùng theo số mũ giảm dần (hoặc tăng dần) của biến;

+ Đặt hai đơn thức có cùng số mũ của biến ở cùng cột sao cho đơn thức của P(x) ở trên và đơn thức của Q(x) ở dưới;

+ Trừ hai đơn thức trong từng cột, ta có hiệu cần tìm.

Ví dụ: Cho M(x) = 5x4 + 7x3 – 2x và N(x) = –2x3 – 4x2 + 6x + 8. Tính hiệu M(x) – N(x) theo cột dọc.

Hướng dẫn giải

Ta thực hiện đặt phép tính trừ hai đa thức như sau:

               −  Mx=5x4+7x3                –2xNx   =           –2x3–4x2+6x+8¯ Mx−Nx  =5x4+9x3+4x2−8x−8

Vậy M(x) – N(x) = 5x4 + 9x3 + 4x2 – 8x – 8.

– Để trừ đa thức P(x) cho đa thức Q(x) (theo hàng ngang), ta có thể làm như sau:

+ Thu gọn mỗi đa thức và sắp xếp hai đa thức đó cùng theo số mũ giảm dần (hoặc tăng dần) của biến;

+ Viết hiệu P(x) – Q(x) theo hàng ngang, trong đó đa thức Q(x) được đặt trong dấu ngoặc;

+ Sau khi bỏ dấu ngoặc và đổi dấu mỗi đơn thức trong dạng thu gọn của đa thức Q(x), nhóm các đơn thức có cùng số mũ của biến với nhau;

+ Thực hiện phép tính trong từng nhóm, ta được hiệu cần tìm.

Ví dụ: Cho M(x) = 5x4 + 7x3 – 2x và N(x) = –2x3 – 4x2 + 6x + 8. Tính hiệu M(x) – N(x) theo hàng ngang.

Hướng dẫn giải

Ta có:

M(x) – N(x) = (5x4 + 7x3 – 2x) – (–2x3 – 4x2 + 6x + 8)

= 5x4 + 7x3 – 2x + 2x3 + 4x2 – 6x – 8

= 5x4 + (7x2 + 2x3) + 4x2 + (–2x – 6x) – 8

= 5x4 + 9x3 + 4x2 – 8x – 8

Vậy M(x) – N(x) = 5x4 + 9x3 + 4x2 – 8x – 8.

Ví dụ: Xác định bậc của hai đa thức là tổng, hiệu của:

A(x) = –4x4 – 3x2 + 7 và B(x) = 4x4 – 5x2 + 8x – 1.

Hướng dẫn giải

Ta có:

• A(x) + B(x) = (–4x4 – 3x2 + 7) + (4x4 – 5x2 + 8x – 1)

= –4x4 – 3x2 + 7 + 4x4 – 5x2 + 8x – 1

= (–4x4 + 4x4) + (–3x2 – 5x2) + 8x + (7 – 1)

= –8x2 + 8x + 6

Do đó A(x) + B(x) = – 8x2 + 8x + 6.

Vậy bậc của A(x) + B(x) là 2.

• A(x) – B(x) = (–4x4 – 3x2 + 7) – (4x4 – 5x2 + 8x – 1)

= –4x4 – 3x2 + 7 – 4x4 + 5x2 – 8x + 1

= (–4x4 – 4x4) + (–3x2 + 5x2) – 8x + (7 + 1)

= –8x4 + 2x2 – 8x + 8

A(x) + B(x) = –8x4 + 2x2 – 8x + 8.

Vậy bậc của A(x) – B(x) là 4.

B. Bài tập tự luyện

B.1 Bài tập tự luận

Bài 1. Bác Hoa gửi ngân hàng thứ nhất 100 triệu đồng với kì hạn 1 năm, lãi suất x%/năm. Bác Hoa gửi ngân hàng thứ hai 100 triệu đồng với kì hạn 1 năm, lãi suất (x + 1,5)%/năm. Hết kì hạn 1 năm, bác Hoa có được cả gốc lẫn lãi là bao nhiêu ở cả hai ngân hàng?

Hướng dẫn giải

Số tiền lãi ở ngân hàng thứ nhất sau 1 năm là:

100.x%=100.x100=x (triệu đồng)

Số tiền cả gốc lẫn lãi ở ngân hàng thứ nhất sau kì hạn 1 năm là:

100 + x (triệu đồng)

Số tiền lãi ở ngân hàng thứ hai là:

100.x+1,5%=100.x+1,5100=x+1,5 (triệu đồng)

Số tiền cả gốc lẫn lãi ở ngân hàng thứ hai sau kì hạn 1 năm là:

100 + x + 1,5  = 101,5 + x (triệu đồng)

Số tiền bác An có được khi hết kì hạn 1 năm ở cả hai ngân hàng là:

100 + x + 101,5 + x = 2x + 201,5 (triệu đồng)

Vậy sau 1 năm bác Hoa nhận được 2x + 201,5 triệu đồng cả gốc lẫn lãi.

Bài 2. Cho đa thức P(x) = x4 – 5x3 + 4x – 5 và Q(x) = –x4 + 3x2 + 2x + 1.

a) Hãy tính tổng P(x) + Q(x) và tìm bậc của đa thức đó.

b) Tìm đa thức R(x) sao cho P(x) = R(x) + Q(x).

Hướng dẫn giải

a) Ta có: P(x) + Q(x) = (x4 – 5x3 + 4x – 5) + (–x4 + 3x2 + 2x + 1)

= x4 – 5x3 + 4x – 5 – x4 + 3x2 + 2x + 1

= (x4 – x4) – 5x3 + 3x2 + (4x + 2x) + (1 – 5)

= –5x3 + 3x2 + 6x – 4

Vậy P(x) + Q(x) = –5x3 + 3x2 + 6x – 4.

Bậc của đa thức P(x) + Q(x) là 3.

b) Ta có: P(x) = R(x) + Q(x)

Suy ra R(x) = P(x) – Q(x)

Do đó R(x) = (x4 – 5x3 + 4x – 5) – (–x4 + 3x2 + 2x + 1)

= x4 – 5x3 + 4x – 5 + x4 – 3x2 – 2x – 1

= (x4 + x4) – 5x3 – 3x2 + (4x – 2x) + (–1 – 5)

= 2x4 – 5x3 + 3x2 + 2x – 6

Vậy R(x) = 2x4 – 5x3 + 3x2 + 2x – 6.

B.2 Bài tập trắc nghiệm

Câu 1. Cho  f(x) = 3x5 – 3x4 + x2 – 5 và g(x) = 2x4 – x3 – x2 + 5.

Tính hiệu f(x) – g(x) rồi sắp xếp kết quả theo lũy thừa tăng dần của biến ta được:

A. 10 + 2x2 + x3 – 5x4 + 3x5;

B. –10 + 2x2 + x3 – 5x4 + 3x5;

C. 3x5 – 5x4 + x3 + 2x2 + 10;

D. 3x5 – 5x4 + x3 + 2x2 – 10.

Hướng dẫn giải

Đáp án đúng là: B

Ta có:

f(x) – g(x)

= (3x5 – 3x4 + x2 – 5) – (2x4 – x3 –  x2 + 5)

= 3x5 – 3x4 + x2 – 5 – 2x4 + x3 + x2 – 5

= 3x5 + (–3x4 – 2x4) + x3 + (x2 + x2) – 5 – 5

= 3x5 – 5x4 + x3 + 2x2 – 10

Sắp xếp kết quả theo lũy thừa tăng dần của biến ta được:

f(x) – g(x) = –10 + 2x2 + x3 – 5x4 + 3x5.

Vậy ta chọn phương án B.

Câu 2. Cho đa thức P(x) = –6x5 – 4x4 + 3x2 – 2x và Q(x) = 2x5 – 4x4 – 2x3 + 2x2 – x – 3. Tính M(1) với M(x) = P(x) – Q(x).

A. –3;

B. 3;

C. –2;

D. 2.

Hướng dẫn giải

Đáp án đúng là: A

Ta có: M(x) = P(x) – Q(x)

M(x) = P(x) – Q(x)

= (–6x5 – 4x4 + 3x2 – 2x) – (2x5 – 4x4 – 2x3 + 2x2 – x – 3)

= –6x5 – 4x4 + 3x2 – 2x – 2x5 + 4x4 + 2x3 – 2x2 + x + 3

= (–6x5 – 2x5) + (–4x4 + 4x4) + 2x3 + (3x2 – 2x2) + (–2x + x) + 3

= –8x5 + 2x3 + x2 – x + 3

Nên M(x) = –8x5 + 2x3 + x2 – x + 3

Thay x = 1 vào M(x) ta được:

M(1) = –8.15 + 2.13 + 12 – 1 + 3

= –8.1 + 2.1 + 1 – 1 + 3

= –8 + 2 + 3

= –3

Vậy ta chọn phương án A.

Câu 3. Cho f(x) = 2x4 – 4x2 + 6x3 + 2x + 3; g(x) = x + 3 và f(x) + k(x) = g(x). Hệ số tự do của đa thức k(x) là:

A. –1;

B. 4;

C. 0;

D. 6.

Hướng dẫn giải

Đáp án đúng là: C

Ta có f(x) + k(x) = g(x)

Suy ra k(x) = g(x) – f(x)

= x + 3 – (2x4 – 4x2 + 6x3 + 2x + 3)

= x + 3 – 2x4 + 4x2 – 6x3 – 2x – 3

= –2x4 – 6x3 + 4x2 + (x – 2x) + 3 – 3

= –2x4 – 6x3 + 4x2 – x

Vậy hệ số tự do của k(x) là 0.

Xem thêm các bài tóm tắt lý thuyết Toán lớp 7 Cánh diều hay, chi tiết khác:

Lý thuyết Bài 2: Đa thức một biến. Nghiệm của đa thức một biến
Lý thuyết Bài 3: Phép cộng, phép trừ đa thức một biến
Lý thuyết Bài 4: Phép nhân đa thức một biến
Lý thuyết Bài 5: Phép chia đa thức một biến
Lý thuyết Toán 7 chương 6: Biểu thức đại số

Tags : Tags Lý thuyết Toán 7   Phép cộng   phép trừ đa thức một biến   toán 7
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Bài tập cuối tuần Toán lớp 2 Kết nối tri thức Tuần 6

Next post

Giải SGK Toán lớp 3 trang 12, 13, 14 Bài 47: Làm quen với chữ số La Mã | Kết nối tri thức

Bài liên quan:

20 câu Trắc nghiệm Tập hợp các số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7

Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

20 Bài tập Tập hợp các số hữu tỉ có đáp án – Toán 7

Giải sgk tất cả các môn lớp 7 Kết nối tri thức | Giải sgk các môn lớp 7 chương trình mới

Trọn bộ Trắc nghiệm Toán 7 Kết nối tri thức có đáp án

Giải sgk Toán 7 (cả 3 bộ sách) | Giải bài tập Toán 7 (hay, chi tiết)

Bài giảng điện tử Tập hợp các số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7

Bài giảng điện tử Toán 7 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 7

Leave a Comment Hủy

Mục lục

  1. 20 câu Trắc nghiệm Tập hợp các số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  2. Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  3. 20 Bài tập Tập hợp các số hữu tỉ có đáp án – Toán 7
  4. Giải sgk tất cả các môn lớp 7 Kết nối tri thức | Giải sgk các môn lớp 7 chương trình mới
  5. Trọn bộ Trắc nghiệm Toán 7 Kết nối tri thức có đáp án
  6. Giải sgk Toán 7 (cả 3 bộ sách) | Giải bài tập Toán 7 (hay, chi tiết)
  7. Bài giảng điện tử Tập hợp các số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7
  8. Bài giảng điện tử Toán 7 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 7
  9. Giáo án Toán 7 Bài 1 (Kết nối tri thức 2023): Tập hợp các số hữu tỉ
  10. Giáo án Toán 7 Kết nối tri thức (cả năm) mới nhất 2023
  11. Vở thực hành Toán 7 Kết nối tri thức | Giải VTH Toán 7 Tập 1, Tập 2 hay, chi tiết
  12. Vở thực hành Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  13. Lý thuyết Toán lớp 7 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 7 | Kết nối tri thức
  14. Sách bài tập Toán 7 Kết nối tri thức | SBT Toán 7 | Giải SBT Toán 7 | Giải sách bài tập Toán 7 hay nhất | Giải SBT Toán 7 Tập 1, Tập 2 | Giải SBT Toán lớp 7 Kết nối tri thức | SBT Toán 7 KNTT
  15. Giải sgk Toán 7 Kết nối tri thức | Giải Toán 7 | Giải Toán lớp 7 | Giải bài tập Toán 7 hay nhất | Giải Toán 7 Tập 1, Tập 2 Kết nối tri thức
  16. Sách bài tập Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  17. Giải SGK Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  18. 20 câu Trắc nghiệm Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  19. Lý thuyết Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  20. 21 Bài tập Cộng, trừ, nhân, chia số hữu tỉ có đáp án – Toán 7
  21. Bài giảng điện tử Cộng, trừ, nhân, chia số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7
  22. Giáo án Toán 7 Bài 2 (Kết nối tri thức 2023): Cộng, trừ, nhân, chia số hữu tỉ
  23. Vở thực hành Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  24. Sách bài tập Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  25. Giải SGK Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  26. Giáo án Toán 7 (Kết nối tri thức 2023): Luyện tập chung trang 14
  27. Vở thực hành Toán 7 (Kết nối tri thức): Luyện tập chung trang 11, 12, 13
  28. Giải SGK Toán 7 (Kết nối tri thức): Luyện tập chung trang 14
  29. 20 câu Trắc nghiệm Lũy thừa với số mũ tự nhiên của 1 số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  30. Lý thuyết Lũy thừa với số mũ tự nhiên của một số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  31. Vở thực hành Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ
  32. 20 Bài tập Lũy thừa với số mũ tự nhiên của một số hữu tỉ có đáp án – Toán 7
  33. Sách bài tập Toán 7 Bài 3 (Kết nối tri thức): Luỹ thừa với số mũ tự nhiên của một số hữu tỉ
  34. Giải SGK Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ
  35. 22 câu Trắc nghiệm Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  36. Lý thuyết Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  37. Bài giảng điện tử Thứ tự thực hiện các phép tính. Quy tắc chuyển vế | Kết nối tri thức Giáo án PPT Toán 7
  38. Giáo án Toán 7 Bài 4 (Kết nối tri thức 2023): Thứ tự thực hiện các phép tính. quy tắc chuyển vế
  39. Vở thực hành Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện phép tính. Quy tắc chuyển vế
  40. 20 Bài tập Thứ tự thực hiện các phép tính. Quy tắc chuyển vế có đáp án – Toán 7
  41. Sách bài tập Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  42. Giải SGK Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  43. Giáo án Toán 7 (Kết nối tri thức 2023): Luyện tập chung trang 23
  44. Vở thực hành Toán 7 (Kết nối tri thức): Luyện tập chung trang 19, 20, 21
  45. Toán lớp 7 (Kết nối tri thức) Luyện tập chung trang 23
  46. 32 câu Trắc nghiệm Toán lớp 7 Chương 1 (Kết nối tri thức) có đáp án: Số hữu tỉ
  47. Lý thuyết Toán 7 Chương 1 (Kết nối tri thức 2023): Số hữu tỉ hay, chi tiết
  48. Giáo án Toán 7 (Kết nối tri thức 2023): Bài tập cuối chương 1
  49. Vở thực hành Toán 7 (Kết nối tri thức): Bài ôn tập cuối chương 1
  50. 24 Bài tập Toán 7 Chương 1 có đáp án: Số hữu tỉ
  51. Sách bài tập Toán 7 (Kết nối tri thức): Ôn tập chương 1 trang 20, 21
  52. Giải SGK Toán 7 (Kết nối tri thức): Bài tập cuối chương 1

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán