Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 7

Sách bài tập Toán 7 Bài 1 (Cánh diều): Tổng các góc của một tam giác

By admin 23/10/2023 0

Giải SBT Toán lớp 7 Bài 1: Tổng các góc của một tam giác

Giải SBT Toán 7 trang 68 Tập 2

Bài 1 trang 68 sách bài tập Toán lớp 7 Tập 2: Cho tam giác MHK vuông tại H. Ta có:

A. M^+K^>90°;

B. M^+K^=90° ;

C. M^+K^<90° ;

D. M^+K^=180° .

Lời giải:

Đáp án đúng là: B

Xét tam giác MHK vuông tại H ta có:

M^+K^=90° (trong tam giác vuông, tổng hai góc nhọn bằng 90°).

Vậy ta chọn đáp án B.

Bài 2 trang 68 sách bài tập Toán lớp 7 Tập 2: Quan sát Hình 3.

Quan sát Hình 3. Tính các số đo x, y, z

a) Tính các số đo x, y, z.

b) Hãy nhận xét về tổng các số đo x + y + z.

Lời giải:

a) • Tam giác DEF có x là số đo góc ngoài của tam giác tại đỉnh D.

Nên x=DEF^+DFE^ (tính chất góc ngoài của tam giác).

Do đó x = 55° + 42° = 97°.

•Ta có: y+DEF^=180° (hai góc kề bù).

Suy ra y=180°−DEF^=180°−55°=125° .

•Ta có: z+DFE^=180° (hai góc kề bù).

Suy ra z=180°−DFE^=180°−42°=138° .

Vậy x = 97°, y = 125° và z = 138°.

b) Ta có: x + y + z = 97° + 125° + 138° = 360°.

Vậy tổng số đo x + y + z của ba góc ngoài (kề bù với góc trong tam giác) luôn bằng 360°.

Bài 3 trang 68 sách bài tập Toán lớp 7 Tập 2:

a) Cho biết một góc nhọn của tam giác vuông bằng 40°. Tính số đo góc nhọn còn lại.

b) Cho một tam giác vuông có hai góc nhọn bằng nhau. Tính số đo mỗi góc nhọn đó.

Lời giải:

a)

Cho biết một góc nhọn của tam giác vuông bằng 40 độ. Tính số đo góc nhọn còn lại

Xét tam giác MNP vuông tại P ta có:

M^+N^=90° (trong tam giác vuông, tổng hai góc nhọn bằng 90°)

Suy ra M︿=90°−N︿=90°−40°=50° .

Vậy số đo góc nhọn còn lại trong tam giác vuông đó là 50°.

b)

Cho biết một góc nhọn của tam giác vuông bằng 40 độ. Tính số đo góc nhọn còn lại

Trong tam giác ABC vuông tại A ta có:

B^+C^=90° (trong tam giác vuông, tổng hai góc nhọn bằng 90°).

Mà B^=C^(giả thiết)

Suy ra B^=C^=90°:2=45° .

Vậy số đo mỗi góc nhọn của tam giác vuông đó là 45°.

Bài 4 trang 68 sách bài tập Toán lớp 7 Tập 2: Bạn Bình phát biểu: “Không có tam giác ABC nào mà A^=3B^,B^=3C^ và C^=14° ”. Phát biểu của bạn Bình có đúng không? Vì sao?

Lời giải:

Giả sử có tam giác ABC thỏa mãn A^=3B^ và B^=3C^

Khi đó A^=3B^=3.3C^=9C^ và B^=3C^ .

Suy ra A^+B^+C^=9C^+3C^+C^=13C^

Mà C^=14°

Do đó A^+B^+C^=13.14°=182° . Điều này vô lí (vì tổng các góc của tam giác bằng 180°).

Do đó không có tam giác ABC nào thỏa mãn điều kiện A^=3B^,B^=3C^ và C^=14° .

Vậy bạn Bình phát biểu đúng.

Bài 5 trang 68 sách bài tập Toán lớp 7 Tập 2: Cho tam giác ABC có A^=50°,B^=70° . Tia phân giác của góc C cắt cạnh AB tại M. Tính số đo của AMC^ và BMC^ .

Lời giải:

Cho tam giác ABC có góc A = 50 độ, góc B = 70 độ . Tia phân giác của góc C cắt cạnh AB tại M

Xét ∆ABC có: A^+B^+C^=180° (định lí tổng ba góc của một tam giác).

Suy ra ACB^=180°−A^−B^=180°−50°−70°=60° .

Vì tia CM là tia phân giác của nên ta có:

C1^=C2^=ACB^2=60°2=30°.

Xét ∆AMC có: AMC^+C2^+A^=180° (tổng ba góc của một tam giác).

Suy ra AMC^=180°−C2^−A^=180°−30°−50°=100°.

Xét ∆BMC có: BMC^+C1^+B^=180° (tổng ba góc của một tam giác).

Suy ra BMC^=180°−C1^−B^=180°−30°−70°=80°.

Vậy AMC^=100°,BMC^=80°.

Bài 6 trang 68 sách bài tập Toán lớp 7 Tập 2: Tính số đo các góc của tam giác ABC trong mỗi trường hợp sau:

a) A^=B^=C^ ;

b) A^=70° và C^−B^=20° ;

c) Số đo của A^,B^,C^ lần lượt tỉ lệ với 1; 2; 3.

Lời giải:

a) Xét ∆ABC có: A^+B^+C^=180° (tổng ba góc của một tam giác).

Mà A^=B^=C^

Do đó A^=B^=C^=180°:3=60° .

Vậy số đo mỗi góc A, B, C bằng 60°.

b) Xét ∆ABC có: A^+B^+C^=180° (tổng ba góc của một tam giác).

Suy ra B^+C^=180°−A^=180°−70°=110° .

Lại có C^−B^=20°

Suy ra B^=110°−20°:2=45°

Khi đó C^=110°−45°=65° .

Vậy số đo góc C là 65°, số đo góc B là 45°.

c) Số đo của A^,B^,C^ lần lượt tỉ lệ với 1; 2; 3 nên ta có A^1=B^2=C^3.

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

A^1=B^2=C^3=A^+B^+C^1+2+3=180°6=30°.

Do đó

• A^=1.30°=30°;

• B^=2.30°=60°;

• C^=3.30°=90°.

Vậy số đo góc A, B, C lần lượt bằng 30°,60° và 90°.

Bài 7 trang 68 sách bài tập Toán lớp 7 Tập 2: Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC tại H, AD là tia phân giác của HAC^ (Hình 4)

Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC tại H, AD là tia phân giác của góc HAC (Hình 4)

a) Tìm các cặp góc có tổng số đo bằng 90°.

b) Cho C^=40° . Tính số đo của B^,BDA^,DAC^.

c) Chứng minh: BAH^=C^,CAH^=B^,BAD^=BDA^.

Lời giải:

a) Xét ∆ABC vuông tại A ta có:

B^+C^=90° (trong tam giác vuông, tổng hai góc nhọn bằng 90°).

Xét ∆ABH vuông tại H ta có:

B^+BAH^=90° (trong tam giác vuông, tổng hai góc nhọn bằng 90°).

Xét ∆ACH vuông tại H ta có:

C^+CAH^=90° (trong tam giác vuông, tổng hai góc nhọn bằng 90°).

Xét ∆ADH vuông tại H ta có:

ADH^+DAH^=90° (trong tam giác vuông, tổng hai góc nhọn bằng 90°).

Ta có: BAC^=90°=BAH^+HAC^=BAD^+DAC^

Vậy các cặp góc có tổng số đo bằng 90° là:

BAH^ và CAH^ ; B^ và C^ ; B^ và BAH^ ; C^ và CAH^ ; BAD^ và DAC^ ; HAD^ và ADH^ .

b) • Do B^+C^=90° (chứng minh câu a) nên B^=90°−C^ .

Mà C^=40° nên B^=90°−40°=50° .

• Do C^+CAH^=90° (chứng minh câu a)

Nên CAH^=90°−C^=90°−40°=50° .

MàAD là tia phân giác của CAH^ (giả thiết)

Do đó DAC^=DAH^=CAH^2=50°2=25° .

• Do ADH^+DAH^=90°(chứng minh câu a)

Nên ADH^=90°−DAH^=90°−25°=65° hay BDA^=65°.

Vậy B^=50°,BDA^=65°,DAC^=25°.

c) Vì B^+BAH^=90° (chứng minh câu a)

Nên BAH^=90°−B^=90°−50°=40° .

Khi đó B^=CAH^=50° , C^=BAH^=40° .

Lại có BAD^+DAC^=90°;ADH^+DAH^=90° (chứng minh câu a)

Mà DAC^=DAH^ suy ra BAD^=ADH^ hay BAD^=BDA^.

Vậy BAH^=C^,CAH^=B^,BAD^=BDA^.

Giải SBT Toán 7 trang 69 Tập 2

Bài 8 trang 69 sách bài tập Toán lớp 7 Tập 2: Cho tam giác ABC. Kẻ HB vuông góc với AC tại H. Kẻ CK vuông góc với AB tại K, BH cắt CK tại I (Hình 5).

Cho tam giác ABC. Kẻ HB vuông góc với AC tại H. Kẻ CK vuông góc với AB tại K

Nếu A^<90° thì khi đó ta có:

A. ABH^<ACK^ ;

B. ABH^=ACK^ ;

C. ABH^>ACK^ ;

D. ABH^=90°+ACK^ .

Lời giải:

Đáp án đúng là: B

• Xét ∆ABH vuông tại H ta có:

A^+ABH^=90° (trong tam giác vuông, tổng hai góc nhọn bằng 90°).

Suy ra ABH^=90°−A^ (1)

• Xét ∆ACK vuông tại K ta có:

A^+ACK^=90° (trong tam giác vuông, tổng hai góc nhọn bằng 90°).

Suy ra ACK^=90°−A^ (2)

Từ (1) và (2) ta có ABH^=ACK^=90°−A^ .

Vậy ta chọn đáp án B.

Bài 9 trang 69 sách bài tập Toán lớp 7 Tập 2: Cho tam giác ABC, tia phân giác của BAC^ cắt cạnh BC tại D. Tính số đo mỗi góc của tam giác ABC, biết ADB^=80° và B^=1,5C^ .

Lời giải:

Cho tam giác ABC, tia phân giác của góc BAC cắt cạnh BC tại D. Tính số đo mỗi góc của tam giác ABC, biết góc ADB = 80 độ và góc B = 1,5 lần góc C

•Xét ∆ABD có: A^1+B^+ADB^=180° (tổng ba góc của một tam giác)

Suy ra A^1+B^=180°−ADB^=180°−80°=100°

Khi đó A^1=100°−B^

Lại có B^=1,5C^

Suy ra A^1=100°−1,5C^(1)

•Vì ADB^là góc ngoài của tam giác ACD tại đỉnh D nên ADB^=C^+A^2

Suy ra A^2=ADB^−C^=80o−C^ (2)

• Ta có AD là tia phân giác của góc BAC nên A^1=A^2(3)

Từ (1),(2),(3) ta có: 100°−1,5C^=80°−C^

Hay 1,5C^−C^=100°−80°

Suy ra C^=40° .

Do đó B^=1,5C^=1,5.40°=60° .

Xét ∆ABC có: (tổng ba góc của một tam giác).

Do đó BAC^=180°−C^−B^=180°−40°−60°=80° .

Vậy C^=40°,B^=60°,BAC^=80°.

Bài 10 trang 69 sách bài tập Toán lớp 7 Tập 2: Ở Hình 6 có A^=B^=60° và Cx là tia phân giác của góc ACy. Chứng minh Cx song song với AB.

Ở Hình 6 có góc A = góc B = 60 độ và Cx là tia phân giác của góc ACy. Chứng minh Cx song song với AB

Lời giải:

Vì ACy^là góc ngoài của ∆ABC tại đỉnh C nên ACy^=A^+B^ .

Do đó ACy^=60°+60°=120° .

Vì Cx là tia phân giác của góc ACy nên C^1=C^2=ACy^2=120°2=60° .

Suy ra B^=C^1 (cùng bằng 60°), mà chúng ở vị trí đồng vị nên Cx // AB.

Vậy Cx // AB.

Bài 11 trang 69 sách bài tập Toán lớp 7 Tập 2: Ở Hình 7 có BAD^=BCD^=90°,ADB^=15° , AD song song với BC. Chứng minh AB song song với DC.

Ở Hình 7 có góc BAD = góc BCD = 90 độ, góc ADB = 15 độ, AD song song với BC

Lời giải:

Do AD // BC (giả thiết) nên DBC^=ADB^=15° (hai góc so le trong).

Xét ∆BCD vuông tại C ta có:

CBD^+CDB^=90° (trong tam giác vuông, tổng hai góc nhọn bằng 90°).

Suy ra BDC^=90°−DBC^=90°−15°=75° .

Xét ∆ABD vuông tại A ta có:

ABD^+ADB^=90° (trong tam giác vuông, tổng hai góc nhọn bằng 90°).

Suy ra ABD^=90°−ADB^=90°−15°=75° .

Do đó ABD^=BDC^ (cùng bằng 75°)

Mà ABD^ và BDC^ ở vị trí so le trong nên AB // DC.

Vậy AB // DC.

Xem thêm các bài giải SBT Toán lớp 7 Cánh diều hay, chi tiết khác:

SBT Toán 7 : Bài tập cuối chương VI 

SBT Toán 7 Bài 1 : Tổng các góc của một tam giác

SBT Toán 7 Bài 2 : Quan hệ giữa góc và cạnh đối diện. Bất đẳng thức tam giác

SBT Toán 7 Bài 3 : Hai tam giác bằng nhau

SBT Toán 7 Bài 4 : Trường hợp bằng nhau thứ nhất của tam giác: cạnh – cạnh – cạnh

Tags : Tags Giải sách bài tập   toán 7   Tổng các góc của một tam giác
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giải SGK Toán lớp 2 Tập 1 trang 13, 14, 15, 16: Số hạng – Tổng | Chân trời sáng tạo

Next post

Giáo án Toán lớp 3 Bài 53 (Kết nối tri thức 2023): Luyện tập chung

Bài liên quan:

20 câu Trắc nghiệm Tập hợp các số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7

Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

20 Bài tập Tập hợp các số hữu tỉ có đáp án – Toán 7

Giải sgk tất cả các môn lớp 7 Kết nối tri thức | Giải sgk các môn lớp 7 chương trình mới

Trọn bộ Trắc nghiệm Toán 7 Kết nối tri thức có đáp án

Giải sgk Toán 7 (cả 3 bộ sách) | Giải bài tập Toán 7 (hay, chi tiết)

Bài giảng điện tử Tập hợp các số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7

Bài giảng điện tử Toán 7 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 7

Leave a Comment Hủy

Mục lục

  1. 20 câu Trắc nghiệm Tập hợp các số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  2. Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  3. 20 Bài tập Tập hợp các số hữu tỉ có đáp án – Toán 7
  4. Giải sgk tất cả các môn lớp 7 Kết nối tri thức | Giải sgk các môn lớp 7 chương trình mới
  5. Trọn bộ Trắc nghiệm Toán 7 Kết nối tri thức có đáp án
  6. Giải sgk Toán 7 (cả 3 bộ sách) | Giải bài tập Toán 7 (hay, chi tiết)
  7. Bài giảng điện tử Tập hợp các số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7
  8. Bài giảng điện tử Toán 7 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 7
  9. Giáo án Toán 7 Bài 1 (Kết nối tri thức 2023): Tập hợp các số hữu tỉ
  10. Giáo án Toán 7 Kết nối tri thức (cả năm) mới nhất 2023
  11. Vở thực hành Toán 7 Kết nối tri thức | Giải VTH Toán 7 Tập 1, Tập 2 hay, chi tiết
  12. Vở thực hành Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  13. Lý thuyết Toán lớp 7 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 7 | Kết nối tri thức
  14. Sách bài tập Toán 7 Kết nối tri thức | SBT Toán 7 | Giải SBT Toán 7 | Giải sách bài tập Toán 7 hay nhất | Giải SBT Toán 7 Tập 1, Tập 2 | Giải SBT Toán lớp 7 Kết nối tri thức | SBT Toán 7 KNTT
  15. Giải sgk Toán 7 Kết nối tri thức | Giải Toán 7 | Giải Toán lớp 7 | Giải bài tập Toán 7 hay nhất | Giải Toán 7 Tập 1, Tập 2 Kết nối tri thức
  16. Sách bài tập Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  17. Giải SGK Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  18. 20 câu Trắc nghiệm Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  19. Lý thuyết Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  20. 21 Bài tập Cộng, trừ, nhân, chia số hữu tỉ có đáp án – Toán 7
  21. Bài giảng điện tử Cộng, trừ, nhân, chia số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7
  22. Giáo án Toán 7 Bài 2 (Kết nối tri thức 2023): Cộng, trừ, nhân, chia số hữu tỉ
  23. Vở thực hành Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  24. Sách bài tập Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  25. Giải SGK Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  26. Giáo án Toán 7 (Kết nối tri thức 2023): Luyện tập chung trang 14
  27. Vở thực hành Toán 7 (Kết nối tri thức): Luyện tập chung trang 11, 12, 13
  28. Giải SGK Toán 7 (Kết nối tri thức): Luyện tập chung trang 14
  29. 20 câu Trắc nghiệm Lũy thừa với số mũ tự nhiên của 1 số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  30. Lý thuyết Lũy thừa với số mũ tự nhiên của một số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  31. Vở thực hành Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ
  32. 20 Bài tập Lũy thừa với số mũ tự nhiên của một số hữu tỉ có đáp án – Toán 7
  33. Sách bài tập Toán 7 Bài 3 (Kết nối tri thức): Luỹ thừa với số mũ tự nhiên của một số hữu tỉ
  34. Giải SGK Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ
  35. 22 câu Trắc nghiệm Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  36. Lý thuyết Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  37. Bài giảng điện tử Thứ tự thực hiện các phép tính. Quy tắc chuyển vế | Kết nối tri thức Giáo án PPT Toán 7
  38. Giáo án Toán 7 Bài 4 (Kết nối tri thức 2023): Thứ tự thực hiện các phép tính. quy tắc chuyển vế
  39. Vở thực hành Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện phép tính. Quy tắc chuyển vế
  40. 20 Bài tập Thứ tự thực hiện các phép tính. Quy tắc chuyển vế có đáp án – Toán 7
  41. Sách bài tập Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  42. Giải SGK Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  43. Giáo án Toán 7 (Kết nối tri thức 2023): Luyện tập chung trang 23
  44. Vở thực hành Toán 7 (Kết nối tri thức): Luyện tập chung trang 19, 20, 21
  45. Toán lớp 7 (Kết nối tri thức) Luyện tập chung trang 23
  46. 32 câu Trắc nghiệm Toán lớp 7 Chương 1 (Kết nối tri thức) có đáp án: Số hữu tỉ
  47. Lý thuyết Toán 7 Chương 1 (Kết nối tri thức 2023): Số hữu tỉ hay, chi tiết
  48. Giáo án Toán 7 (Kết nối tri thức 2023): Bài tập cuối chương 1
  49. Vở thực hành Toán 7 (Kết nối tri thức): Bài ôn tập cuối chương 1
  50. 24 Bài tập Toán 7 Chương 1 có đáp án: Số hữu tỉ
  51. Sách bài tập Toán 7 (Kết nối tri thức): Ôn tập chương 1 trang 20, 21
  52. Giải SGK Toán 7 (Kết nối tri thức): Bài tập cuối chương 1

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán