Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 7

Vở bài tập Toán 7 Bài 11: Tính chất ba đường phân giác của tam giác – Cánh diều

By admin 23/10/2023 0

Giải VBT Toán lớp 7 Bài 11: Tính chất ba đường phân giác của tam giác

I. Kiến thức trọng tâm

Câu 1 trang 109 vở bài tập Toán lớp 7 Tập 2:

Trong tam giác ABC (Hình 82), tia phân giác góc A cắt cạnh BC tại điểm D. Khi đó đoạn thẳng AD đươc gọi là …………. (xuất phát từ đỉnh A) của tam giác ABC.

Trong tam giác ABC (Hình 82), tia phân giác góc A cắt cạnh BC tại điểm D. Khi đó đoạn thẳng AD

Lời giải:

Trong tam giác ABC (Hình 82), tia phân giác góc A cắt cạnh BC tại điểm D. Khi đó đoạn thẳng AD đươc gọi là tia phân giác (xuất phát từ đỉnh A) của tam giác ABC.

Câu 2 trang 109 vở bài tập Toán lớp 7 Tập 2:

– Ba đường phân giác của tam giác cùng đi qua ………….. điểm

– Giao điểm ba đường phân giác của một tam giác ………….. ba cạnh của tam giác đó.

Lời giải:

– Ba đường phân giác của tam giác cùng đi qua một điểm

– Giao điểm ba đường phân giác của một tam giác cách đều ba cạnh của tam giác đó.

II. Luyện tập

Câu 1 trang 109 vở bài tập Toán lớp 7 Tập 2: Cho tam giác ABC cân tại A vẽ đường phân giác AD. Chứng minh AD cũng là đường trung tuyến của tam giác đó.

Lời giải:

Cho tam giác ABC cân tại A vẽ đường phân giác AD. Chứng minh AD cũng là đường trung tuyến

Xét hai tam giác ADB và ADC, ta có:

AD là cạnh chung;

DAB^= DAC^(do AD là tia phân giác góc A);

AB = AC (tính chất tan giác cân).

Suy ra ∆ADB = ∆ADC (c.g.c)

Do đó BD = CD (hai cạnh tương ứng).

Từ đó AD là đường trung tuyến của tam giác ABC.

Câu 2 trang 110 vở bài tập Toán lớp 7 Tập 2: Tính số đo x trong Hình 84

Tính số đo x trong Hình 84

Lời giải:

Vì ba đường phân giác của tam giác ABC cùng đi qua một điểm nên giao điểm I của hai đường phân giác xuất phát từ đỉnh B và C cũng thuộc đường phân giác xuất phát từ đỉnh A. Suy ra tia AI tia phân giác của góc BAC.

Do đó IAB^= IAC^= 30o

Vậy số đo x = 30°.

Câu 3 trang 110 vở bài tập Toán lớp 7 Tập 2: Cho tam giác ABC có I là giao điểm của ba đường phân giác. M, N, P lần lượt là hình chiếu của I trên các cạnh BC, CA, AB. Chứng minh rằng: IA, IB, IC lần lượt là đường trung trực của các đoạn thẳng NP, PM, MN.

Lời giải:

Cho tam giác ABC có I là giao điểm của ba đường phân giác. M, N, P lần lượt là hình chiếu

Do điểm I là giao điểm của ba đường phân giác của tam giác ABC nên IM = IN = IP.

Xét hai tam giác vuông IAP và IAN, ta có:

IA là cạnh chung;

IAP^= IAN^(Vì I thuộc tia phân giác góc A).

Suy ra ∆IAP = ∆IAN (cạnh huyền – góc nhọn).

Do đó AP = AN (hai cạnh tương ứng).

Vì IN = IP nên I nằm trên đường trung trực của đoạn thẳng NP.

Vì AP = AN nên A nằm trên đường trung trực của đoạn thẳng NP.

Suy ra IA là đường trung trực của đoạn thẳng NP.

Chứng minh tương tự ta có: IB là đường trung trực của đoạn thẳng MP, IC là đường trung trực của đoạn thẳng MN.

III. Bài tập

Câu 1 trang 111 vở bài tập Toán lớp 7 Tập 2: Cho tam giác ABC có ba đường phân giác cắt nhau tại I. Gọi M, N, P lần lượt là hình chiếu của I trên các cạnh BC, CA, AB.

a) Các tam giác IMN, INP, IPM có là tam giác cân không? Vì sao?

b) Các tam giác ANP, BPM, CMN có là tam giác cân không? Vì sao?

Lời giải:

Cho tam giác ABC có ba đường phân giác cắt nhau tại I. Gọi M, N, P lần lượt là hình chiếu

a) Do I là giao điểm của ba đường phân giác của tam giác ABC nên IM = IN = IP.

Do IM = IN nên tam giác IMN là tam giác cân tại I

Do IN = IP nên tam giác INP là tam giác cân tại I

Do IP = IM nên tam giác IPM là tam giác cân tại I

b) Xét hai tam giác IAP và IAN, ta có

IPA^= INA^= 90o

IA là cạnh chung

IAP^= IAN^(vì I nằm trên tia phân giác góc A)

Suy ra ∆IAP = ∆IAN (cạnh huyền – góc nhọn).

Do đó AP = AN (hai cạnh tương ứng)

Vì AP = AN nên tam giác ANP là tam giác cân

Chứng minh tương tự các tam giác BPM, CMN là tam giác cân.

Câu 2 trang 111 vở bài tập Toán lớp 7 Tập 2: Tam giác ABC có ba đường phân giác cắt nhau tại I. Chứng minh:

a) IAB^+ IBC^ + IAC^= 90o;

b) BIC^= 90o + 12BAC^ .

Lời giải:

Tam giác ABC có ba đường phân giác cắt nhau tại I. Chứng minh

a) Ta có: BAC^ + CBA^ + ACB^= 180o (tổng ba góc của một tam giác).

Vì tia AI, BI, CI lần lượt là tia phân giác của các góc BAC^, CBA^, ACB^ nên

IAB^ = 12BAC^, IBC^ = 12CBA^, ICA^ = 12ACB^,

Suy ra IAB^ + IBC^ + IAC^ = 12BAC^ + 12CBA^ + 12ACB^

= 12(BAC^+ CBA^ + ACB^) =12 .180o = 90o.

b) Ta có BIC^ + IBC^ + ICB^ = 180o (tổng ba góc của một tam giác).

Suy ra BIC^ + 12CBA^ +12 ACB^ = 180o

hay BIC^ + 12( CBA^ + ACB^ ) = 180o.

Vì BAC^ + CBA^ + ACB^ = 180o nên CBA^ + ACB^ = 180o – BAC^

Do đó BIC^ + 12 (180o – BAC^ ) = 180o hay BIC^ = 90o + 12BAC^.

Câu 3 trang 112 vở bài tập Toán lớp 7 Tập 2: Tam giác ABC có ba đường phân giác cắt nhau tại I và AB < AC.

a) Chứng minh CBI^ > ACI^;

b) So sánh IB và IC.

Lời giải:

Tam giác ABC có ba đường phân giác cắt nhau tại I và AB < AC

a) Vì AB < AC nên ACB^ < ABC^ (1)

Vì các tia BI, CI lần lượt là tia phân giác của góc ABC và ACB nên

CBI^ = 12ABC^ và ACI^ = 12ACB^ (2)

Từ (1) và (2) suy ra CBI^ > ACI^

b) Ta có CBI^ > ACI^ ; BCI^ = ACI^. Suy ra CBI^ > BCI^.

Trong tam giác IBC, Vì CBI^ > BCI^ nên IC > IB hay IB < IC.

Câu 4 trang 112 vở bài tập Toán lớp 7 Tập 2: Tam giác ABC có ba đường phân giác cắt nhau tại I. Gọi M, N, P lần lượt là hình chiếu của điểm I trên các cạnh BC, CA, AB. Chứng minh:

a) IA, IB, IC lần lượt là tia phân giác của các góc NIP, PIM, MIN.

b) NIP^ = 180o – BAC^;

c) INP^ = IPN^ = 12BAC^;

d) MNP^ = 90o – 12 BAC^;

Lời giải:

Tam giác ABC có ba đường phân giác cắt nhau tại I. Gọi M, N, P lần lượt là hình chiếu

a) Xét hai tam giác vuông IAP và IAN, ta có:

IA là cạnh chung;

IAP^ = IAN^ (do I nằm trên tia phân giác góc A).

Suy ra ∆IAP = ∆IAM (cạnh huyền – góc nhọn).

Do đó AIP^ = AIN^ (hai góc tương ứng).

Suy ra tia IA là tia phân giác của góc NIP.

Chứng minh tương tự ta cũng có:

IB là tia phân giác của góc PIM, IC là tia phân giác của góc MIN.

b) Xét tam giác vuông AIP, ta có AIP^ + IAP^ = 90o

Xét tam giác vuông AIN, ta có AIN^ + IAN^ = 90o

Suy ra AIP^ + IAP^ + AIN^ + IAN^ = 90o + 90o = 180o

(AIP^ + AIN^) + ( IAP^ + IAN^ ) = 180o (1)

Mà AIP^ và AIN^, IAP^ và IAN^ là các cặp góc kề nhau nên:

AIP^ + AIN^ = 90o và IAP^ + IAN^ = 90o (2)

Từ (1) và (2), suy ra: NIP^ + NAP^ = 180o hay NIP^ + BAC^ = 180o

Do đó: NIP^ = 180o – BAC^;

c) Vì I là giao điểm của ba đường phân giác nên IN = IP

Suy ra tam giác INP là tam giác cân tại I. Do đó: INP^ = IPN^

Mà INP^ + IPN^ + NIP^ = 180o (tổng ba góc của một tam giác)

Suy ra 2INP^ + (180o – BAC^) = 180o hay 2INP^ – BAC^ = 0o.

Suy ra : INP^ = IPN^ = 12BAC^.

d) Chứng minh tương tự câu c, ta có: IMP^ = 12ABC^, IMN^ = 12ACB^.

Suy ra NMP^ = IMP^ + IMN^ = 12ABC^ + 12ACB^ = 12( ABC^ + ACB^ ) (3)

Ta có BAC^ + ABC^ + ACB^ = 180o (tổng ba góc của một tam giác)

Suy ra ABC^ + ACB^ = 180o – BAC^

Từ (3) và (4) suy ra NMP^ = 12(180o – BAC^) = 90o – 12BAC^.

 

Tags : Tags Giải vở bài tập   Tính chất ba đường phân giác của tam giác   toán 7
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giải SGK Toán lớp 2 Tập 1 trang 60, 61: 11 trừ đi một số | Chân trời sáng tạo

Next post

Bài giảng điện tử Bài 65: Luyện tập chung | Giáo án PPT Toán 3

Bài liên quan:

20 câu Trắc nghiệm Tập hợp các số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7

Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

20 Bài tập Tập hợp các số hữu tỉ có đáp án – Toán 7

Giải sgk tất cả các môn lớp 7 Kết nối tri thức | Giải sgk các môn lớp 7 chương trình mới

Trọn bộ Trắc nghiệm Toán 7 Kết nối tri thức có đáp án

Giải sgk Toán 7 (cả 3 bộ sách) | Giải bài tập Toán 7 (hay, chi tiết)

Bài giảng điện tử Tập hợp các số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7

Bài giảng điện tử Toán 7 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 7

Leave a Comment Hủy

Mục lục

  1. 20 câu Trắc nghiệm Tập hợp các số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  2. Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  3. 20 Bài tập Tập hợp các số hữu tỉ có đáp án – Toán 7
  4. Giải sgk tất cả các môn lớp 7 Kết nối tri thức | Giải sgk các môn lớp 7 chương trình mới
  5. Trọn bộ Trắc nghiệm Toán 7 Kết nối tri thức có đáp án
  6. Giải sgk Toán 7 (cả 3 bộ sách) | Giải bài tập Toán 7 (hay, chi tiết)
  7. Bài giảng điện tử Tập hợp các số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7
  8. Bài giảng điện tử Toán 7 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 7
  9. Giáo án Toán 7 Bài 1 (Kết nối tri thức 2023): Tập hợp các số hữu tỉ
  10. Giáo án Toán 7 Kết nối tri thức (cả năm) mới nhất 2023
  11. Vở thực hành Toán 7 Kết nối tri thức | Giải VTH Toán 7 Tập 1, Tập 2 hay, chi tiết
  12. Vở thực hành Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  13. Lý thuyết Toán lớp 7 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 7 | Kết nối tri thức
  14. Sách bài tập Toán 7 Kết nối tri thức | SBT Toán 7 | Giải SBT Toán 7 | Giải sách bài tập Toán 7 hay nhất | Giải SBT Toán 7 Tập 1, Tập 2 | Giải SBT Toán lớp 7 Kết nối tri thức | SBT Toán 7 KNTT
  15. Giải sgk Toán 7 Kết nối tri thức | Giải Toán 7 | Giải Toán lớp 7 | Giải bài tập Toán 7 hay nhất | Giải Toán 7 Tập 1, Tập 2 Kết nối tri thức
  16. Sách bài tập Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  17. Giải SGK Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  18. 20 câu Trắc nghiệm Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  19. Lý thuyết Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  20. 21 Bài tập Cộng, trừ, nhân, chia số hữu tỉ có đáp án – Toán 7
  21. Bài giảng điện tử Cộng, trừ, nhân, chia số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7
  22. Giáo án Toán 7 Bài 2 (Kết nối tri thức 2023): Cộng, trừ, nhân, chia số hữu tỉ
  23. Vở thực hành Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  24. Sách bài tập Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  25. Giải SGK Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  26. Giáo án Toán 7 (Kết nối tri thức 2023): Luyện tập chung trang 14
  27. Vở thực hành Toán 7 (Kết nối tri thức): Luyện tập chung trang 11, 12, 13
  28. Giải SGK Toán 7 (Kết nối tri thức): Luyện tập chung trang 14
  29. 20 câu Trắc nghiệm Lũy thừa với số mũ tự nhiên của 1 số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  30. Lý thuyết Lũy thừa với số mũ tự nhiên của một số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  31. Vở thực hành Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ
  32. 20 Bài tập Lũy thừa với số mũ tự nhiên của một số hữu tỉ có đáp án – Toán 7
  33. Sách bài tập Toán 7 Bài 3 (Kết nối tri thức): Luỹ thừa với số mũ tự nhiên của một số hữu tỉ
  34. Giải SGK Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ
  35. 22 câu Trắc nghiệm Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  36. Lý thuyết Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  37. Bài giảng điện tử Thứ tự thực hiện các phép tính. Quy tắc chuyển vế | Kết nối tri thức Giáo án PPT Toán 7
  38. Giáo án Toán 7 Bài 4 (Kết nối tri thức 2023): Thứ tự thực hiện các phép tính. quy tắc chuyển vế
  39. Vở thực hành Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện phép tính. Quy tắc chuyển vế
  40. 20 Bài tập Thứ tự thực hiện các phép tính. Quy tắc chuyển vế có đáp án – Toán 7
  41. Sách bài tập Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  42. Giải SGK Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  43. Giáo án Toán 7 (Kết nối tri thức 2023): Luyện tập chung trang 23
  44. Vở thực hành Toán 7 (Kết nối tri thức): Luyện tập chung trang 19, 20, 21
  45. Toán lớp 7 (Kết nối tri thức) Luyện tập chung trang 23
  46. 32 câu Trắc nghiệm Toán lớp 7 Chương 1 (Kết nối tri thức) có đáp án: Số hữu tỉ
  47. Lý thuyết Toán 7 Chương 1 (Kết nối tri thức 2023): Số hữu tỉ hay, chi tiết
  48. Giáo án Toán 7 (Kết nối tri thức 2023): Bài tập cuối chương 1
  49. Vở thực hành Toán 7 (Kết nối tri thức): Bài ôn tập cuối chương 1
  50. 24 Bài tập Toán 7 Chương 1 có đáp án: Số hữu tỉ
  51. Sách bài tập Toán 7 (Kết nối tri thức): Ôn tập chương 1 trang 20, 21
  52. Giải SGK Toán 7 (Kết nối tri thức): Bài tập cuối chương 1

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán