Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SBT Toán 10 – Cánh diều

Sách bài tập Toán 10 Bài 4 (Cánh diều): Tổng và hiệu của hai vectơ

By admin 12/04/2023 0

Giải SBT Toán lớp 10 Bài 4: Tổng và hiệu của hai vectơ

Giải SBT Toán 10 trang 92 Tập 1

Bài 32 trang 92 SBT Toán 10 Tập 1: Cho ba điểm M, N, P phân biệt. Phát biểu nào sau đây là đúng?

Sách bài tập Toán 10 Bài 4: Tổng và hiệu của hai vectơ - Cánh diều (ảnh 1)

Lời giải:

Đáp án đúng là C

Ta có: MN→−NP→=MN→+PN→=MN→+MK→=MH→≠MP→ (H, K là điểm thỏa mãn MKHN là hình bình hành). Do đó A sai.

Ta có: −MN→+NP→=NM→+NP→=NT→≠MP→(T là điểm MNPT là hình bình hành). Do đó B sai

Ta có: MN→+NP→=MP→ (quy tắc ba điểm). Do đó C đúng.

Ta có: MN→+NP→=MP→≠−MP→. Do đó D sai.

Bài 33 trang 92 SBT Toán 10 Tập 1: Cho tứ giác ABCD là hình bình hành. Khẳng định nào sau đây đúng?

Sách bài tập Toán 10 Bài 4: Tổng và hiệu của hai vectơ - Cánh diều (ảnh 1)

Lời giải:

Đáp án đúng là A

Ta có: BA→+DA→=BA→+CB→=CB→+BA→=CA→. Do đó A đúng.

Ta có: AB→+BC→=AC→≠AD→. Do đó B sai.

Ta có: AB→+AD→=AC→≠CA→. Do đó C sai.

Ta có: AB→+BC→=AC→≠−AC→. Do đó D sai.

Bài 34 trang 92 SBT Toán 10 Tập 1: Cho các điểm A, B, O. Khẳng định nào sau đây đúng?

Sách bài tập Toán 10 Bài 4: Tổng và hiệu của hai vectơ - Cánh diều (ảnh 1)

Lời giải:

Đáp án đúng là B

Cho các điểm A, B, O. Khẳng định nào sau đây đúng?

Ta có:  OA→−OB→=OA→+BO→=BO→+OA→=BA→≠AB→. Do đó A sai.

Ta có: OB→−OA→=OB→+AO→=AO→+OB→=AB→. Do đó B đúng.

Ta có: OA→+OB→=OC→≠AB→ (C là điểm thỏa mãn OBCA là hình bình hành). Do đó C sai.

Ta có: OB→+OA→=OC→≠AB→(C là điểm thỏa mãn OBCA là hình bình hành). Do đó D sai.

Bài 35 trang 92 SBT Toán 10 Tập 1: Cho ba điểm A, B, M phân biệt. Điều kiện cần và đủ để M là trung điểm của đoạn thẳng AB là:

A. MA→=MB→.

B. MA→=MB→.

C. MA→,MB→ ngược hướng.

D. MA→+MB→=0→.

Lời giải:

Đáp án đúng là D

M là trung điểm của đoạn thẳng AB thì MA = MB và MA→,MB→ ngược hướng.

⇒ MA→=−MB→ hay MA→+MB→=0→.

Vậy điều kiện đủ đề M là trung điểm của đoạn thẳng AB là MA→+MB→=0→.

Bài 36 trang 92 SBT Toán 10 Tập 1: Cho tam giác ABC. Điều kiện cần và đủ để G là trọng tâm của tam giác ABC là:

Sách bài tập Toán 10 Bài 4: Tổng và hiệu của hai vectơ - Cánh diều (ảnh 1)

Lời giải:

Đáp án đúng là B

Điều kiện cần và đủ để G là trọng tâm của tam giác ABC là GA→+GB→+GC→=0→

⇔ GB→+GC→=−GA→

⇔ GB→+GC→=AG→

Bài 37 trang 92 SBT Toán 10 Tập 1: Cho tứ giác ABCD, O là trung điểm của AB. Chứng minh: OC→+OD→=AC→+BD→.

Lời giải:

Sách bài tập Toán 10 Bài 4: Tổng và hiệu của hai vectơ - Cánh diều (ảnh 1)

Ta có: 

Sách bài tập Toán 10 Bài 4: Tổng và hiệu của hai vectơ - Cánh diều (ảnh 1)

Bài 38 trang 92 SBT Toán 10 Tập 1: Cho tam giác ABC vuông tại A, AB = 4a, AC = 5a. Tính:

a) AB→−AC→;

b) AB→+AC→.

Lời giải:

Sách bài tập Toán 10 Bài 4: Tổng và hiệu của hai vectơ - Cánh diều (ảnh 1)

a) Xét tam giác ABC vuông tại A, có:

BC2 = AB2 + AC2 (định lí pythagoras)

⇔ BC2 = (4a)2 + (5a)2 = 41a2

⇔ BC = 41a.

Ta có:

AB→−AC→=AB→+CA→=CA→+AB→=CB→

⇒ AB→−AC→=CB→=41a.

Vậy AB→−AC→=41a.

b) Lấy điểm D là điểm thỏa mãn ABDC là hình chữ nhật nên AD = BC (tính chất hình hình chữ nhật).

Ta có: AB→+AC→=AD→ (quy tắc hình bình hành)

⇒ AB→+AC→=AD→=CB→=41a.

Vậy AB→+AC→=41a.

Bài 39 trang 92 SBT Toán 10 Tập 1: Cho tam giác đều ABC cạnh a. Tính:

Sách bài tập Toán 10 Bài 4: Tổng và hiệu của hai vectơ - Cánh diều (ảnh 1)

Ý b

Ý c

Lời giải:

a) Ta có: AB→+BC→=AC→ (quy tắc 3 điểm)

 ⇒ AB→+BC→=AC→=AC=a

Vậy AB→+BC→=a.

b) Ta có: 

AB→−AC→=AB→+CA→=CA→+AB→=CB→

 ⇒ AB→−AC→=CB→=CB=a.

Vậy AB→−AC→=a.

c) Gọi D là điểm thỏa mãn ABDC là hình bình hành, M là trung điểm của BC.

Khi đó: AB→+AC→=AD→

⇒ AB→+AC→=AD→.

Xét tam giác ABC, có AM là đường trung tuyến nên AM là đường cao

⇒ AM = a32

⇒ AD = 2AM = 2.a32=a3.

⇒ AB→+AC→=AD→=a3.

Vậy AB→+AC→=a3.

Bài 40 trang 92 SBT Toán 10 Tập 1: Cho tam giác ABC thỏa mãn AB→+AC→=AB→−AC→. Chứng minh tam giác ABC vuông tại A.

Lời giải:

Gọi D là điểm thỏa mãn ABDC là hình bình hành.

Khi đó, ta có: AB→+AC→=AD→  

⇒ AB→+AC→=AD→=AD

Ta lại có: AB→−AC→=AB→+CA→=CB→

⇒ AB→−AC→=CB→=CB

Mà AB→+AC→=AB→−AC→ nên AD = CB.

Hình bình hành ABCD có AB = CB nên ABCD là hình chữ nhật. Do đó tam giác ABC vuông tại A.

Giải SBT Toán 10 trang 93 Tập 1

Bài 41 trang 93 SBT Toán 10 Tập 1: Cho hai vectơ a→, b→ khác 0→. Chứng minh rằng nếu hai vectơ cùng hướng thì a→+b→=a→+b→.

Lời giải:

Sách bài tập Toán 10 Bài 4: Tổng và hiệu của hai vectơ - Cánh diều (ảnh 1)

Không mất tính tổng quát ta lấy một điểm A bất kì, vẽ AB→=a→, BC→=b→

Vì hai vectơ a→,b→ cùng hướng nên A, B, C thẳng hàng, B nằm giữa A và C.

Ta có:

Sách bài tập Toán 10 Bài 4: Tổng và hiệu của hai vectơ - Cánh diều (ảnh 1)

Bài 42 trang 93 SBT Toán 10 Tập 1: Cho hình vuông ABCD cạnh a. Tính AB→+AC→.

Lời giải:

Sách bài tập Toán 10 Bài 4: Tổng và hiệu của hai vectơ - Cánh diều (ảnh 1)

Lấy E là điểm thỏa mãn ABEC là hình bình hành, gọi M là trung điểm của BC.

Khi đó ta có:

AB→+AC→=AE→

⇒ AB→+AC→=AE→=AE

Vì M là trung điểm của BC nên M là trung điểm của AE

⇒ AE = 2AM.

Xét tam giác ABM vuông tại B, có:

AM2 = AB2 + BM2 (định lí pythagoras)

Sách bài tập Toán 10 Bài 4: Tổng và hiệu của hai vectơ - Cánh diều (ảnh 1)

Bài 43 trang 93 SBT Toán 10 Tập 1: Cho tứ giác ABCD là hình bình hành. Gọi O là giao điểm của hai đường chéo, E là trung điểm của AD, G là giao điểm của BE và AC. Tính:

Sách bài tập Toán 10 Bài 4: Tổng và hiệu của hai vectơ - Cánh diều (ảnh 1)

Ý b

Lời giải:

Sách bài tập Toán 10 Bài 4: Tổng và hiệu của hai vectơ - Cánh diều (ảnh 1)

a) Xét hình bình hành ABCD, có O là giao điểm của AC và BD nên O là trung điểm của AC và O là trung điểm của BD.

Sách bài tập Toán 10 Bài 4: Tổng và hiệu của hai vectơ - Cánh diều (ảnh 1)

b) Xét tam giác ABD, có:

AO là trung tuyến, BE là đường trung tuyến

Mà AO giao với BE tại G nên G là trọng tâm tam giác ABD

⇒ GA→+GB→+GD→=0→

Vậy GA→+GB→+GD→=0→.

Bài 44 trang 93 SBT Toán 10 Tập 1: Cho tam giác ABC. Tìm tập hợp các điểm M trong mặt phẳng thỏa mãn AB→+BM→=AC→−AM→.

Lời giải:

Ta có: AB→+BM→=AM→

⇒ AB→+BM→=AM→=AM

Ta lại có: AC→−AM→=AC→+MA→=MC→

⇒ AC→−AM→=MC→=MC

Vì AB→+BM→=AC→−AM→ nên AM = MC

Tập hợp điểm M thỏa mãn AM = MC là đường trung trực của đoạn thẳng AC.

Vậy tập hợp điểm M thỏa mãn điều kiện đầu bài là đường trung trực của đoạn thẳng AC.

Bài 45 trang 93 SBT Toán 10 Tập 1: Cho hai tam giác ABC và A’B’C’ có cùng trọng tâm là G. Chứng minh AA‘→+BB‘→+CC‘→=0→.

Lời giải:

Ta có: 

AA‘→+BB‘→+CC‘→=AG→+GA‘→+BG→+GB‘→+CG→+GC‘→

Sách bài tập Toán 10 Bài 4: Tổng và hiệu của hai vectơ - Cánh diều (ảnh 1)

Bài 46 trang 93 SBT Toán 10 Tập 1: Cho tam giác nhọn ABC có các cạnh đôi một khác nhau. Gọi H, O lần lượt là trực tâm và tâm đường tròn ngoại tiếp tam giác, D là điểm đối xứng với H qua O. Chứng minh rằng: HA→+HB→+HC→=HD→.

Lời giải:

Sách bài tập Toán 10 Bài 4: Tổng và hiệu của hai vectơ - Cánh diều (ảnh 1)

Vẽ đường kính AE

Ta có: ACE^=90° nên AC ⊥ EC

Mà BH ⊥ EC

⇒ BH // AC (1)

Ta lại có:ABE^=90° và AB ⊥ BE

Mà CH ⊥ AB

⇒ BE // CH (2)

Từ (1) và (2) suy ra BHEC là hình bình hành

Xét tứ giác AHDE, có:

O là trung điểm của HD (gt)

O là trung điểm của AE

Do đó AHDE là hình bình hành

Khi đó, ta có:

HA→+HB→+HC→=HA→+HB→+HC→=HA→+HE→=HD→

Xem thêm các bài giải SBT Toán 10 Cánh diều hay, chi tiết khác:

====== ****&**** =====

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Cho hàm số fx=x2−3x−3,x≠323,x=3 và các khẳng định (I). fx  liên tục tại x=3 . (II). fx gián đoạn tại  x=3 (III). fxliên tục trên ℝ . Khẳng định đúng là

Next post

Cho hàm số bậc bốn y = f (x). Biết rằng hàm số g (x) = ln f (x) có bảng biến thiên như sau: Diện tích hình phẳng giới hạn bởi các đường y = f ‘(x) và y = g ‘(x) thuộc khoảng nào dưới đây?

Bài liên quan:

Sách bài tập Toán 10 Bài 3 (Cánh diều): Tổ hợp

Sách bài tập Toán 10 Bài 3 (Cánh diều): Khái niệm vectơ

Sách bài tập Toán 10 Bài 5 (Cánh diều): Tích của một số với một vectơ

Sách bài tập Toán 10 Bài 6 (Cánh diều): Tích vô hướng của hai vectơ

Sách bài tập Toán 10 Bài ôn tập chương 4 (Cánh diều)

Sách bài tập Toán 10 Bài 1 (Cánh diều): Quy tắc cộng. Quy tắc nhân. Sơ đồ hình cây

Sách bài tập Toán 10 Bài 2 (Cánh diều): Hoán vị. Chỉnh hợp

Sách bài tập Toán 10 Bài 3 (Cánh diều): Các số đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm

Leave a Comment Hủy

Mục lục

  1. Sách bài tập Toán 10 Bài 1 (Cánh diều): Mệnh đề toán học
  2. Sách bài tập Toán 10 Bài 2 (Cánh diều): Tập hợp. Các phép toán trên tập hợp
  3. Sách bài tập Toán 10 (Cánh diều) Bài ôn tập chương 1
  4. Sách bài tập Toán 10 Bài 1 (Cánh diều): Bất phương trình bậc nhất hai ẩn
  5. Sách bài tập Toán 10 Bài 2 (Cánh diều): Hệ bất phương trình bậc nhất hai ẩn
  6. Sách bài tập Toán 10 (Cánh diều) Bài ôn tập chương 2
  7. Sách bài tập Toán 10 Bài 1 (Cánh diều): Hàm số và đồ thị
  8. Sách bài tập Toán 10 Bài 2 (Cánh diều): Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng
  9. Sách bài tập Toán 10 Bài 3 (Cánh diều): Dấu của tam thức bậc hai
  10. Sách bài tập Toán 10 Bài 4 (Cánh diều): Bất phương trình bậc nhất một ẩn
  11. Sách bài tập Toán 10 Bài 5 (Cánh diều): Hai dạng phương trình quy về phương trình bậc hai
  12. Sách bài tập Toán 10 (Cánh diều) Bài ôn tập chương 3
  13. Sách bài tập Toán 10 Bài 1 (Cánh diều): Định lí côsin và định lí sin trong tam giác. Giá trị lượng giác của một góc từ 0° đến 180°
  14. Sách bài tập Toán 10 Bài 2 (Cánh diều): Giải tam giác. Tính diện tích tam giác
  15. Sách bài tập Toán 10 Bài 3 (Cánh diều): Khái niệm vectơ
  16. Sách bài tập Toán 10 Bài 5 (Cánh diều): Tích của một số với một vectơ
  17. Sách bài tập Toán 10 Bài 6 (Cánh diều): Tích vô hướng của hai vectơ
  18. Sách bài tập Toán 10 Bài ôn tập chương 4 (Cánh diều)
  19. Sách bài tập Toán 10 Bài 1 (Cánh diều): Quy tắc cộng. Quy tắc nhân. Sơ đồ hình cây
  20. Sách bài tập Toán 10 Bài 2 (Cánh diều): Hoán vị. Chỉnh hợp
  21. Sách bài tập Toán 10 Bài 3 (Cánh diều): Tổ hợp
  22. Sách bài tập Toán 10 Bài 4 (Cánh diều): Nhị thức Newton
  23. Sách bài tập Toán 10 Bài tập cuối chương 5 (Cánh diều)
  24. Sách bài tập Toán 10 Bài 1 (Cánh diều): Số gần đúng. Sai số
  25. Sách bài tập Toán 10 Bài 2 (Cánh diều): Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu không ghép nhóm
  26. Sách bài tập Toán 10 Bài 3 (Cánh diều): Các số đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm
  27. Sách bài tập Toán 10 Bài 4 (Cánh diều): Xác suất của biến cố trong một số trò chơi đơn giản

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán