Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SGK Toán 11 - Cánh diều

Giải SGK Toán 11 Bài 3 (Cánh diều): Đường thẳng và mặt phẳng song song

By admin 09/07/2023 0

Giải bài tập Toán lớp 11 Bài 3: Đường thẳng và mặt phẳng song song
Câu hỏi khởi động trang 101 Toán 11 Tập 1: Trong thực tiễn, ta thường gặp nhiều đồ dùng, vật thể gợi nên hình ảnh đường thẳng song song với mặt phẳng. Chẳng hạn, thanh barrier song song với mặt phẳng (Hình 44).
Câu hỏi khởi động trang 101 Toán 11 Tập 1 | Cánh diều Giải Toán 11
Thế nào là đường thẳng song song với mặt phẳng trong không gian?
Lời giải:
Sau bài học này, chúng ta sẽ giải quyết được câu hỏi trên như sau:
Đường thẳng song song với mặt phẳng trong không gian là đường thẳng song song với một đường thẳng khác nằm trong mặt phẳng đó.
I. Đường thẳng song song với mặt phẳng
Hoạt động 1 trang 101 Toán 11 Tập 1: a) Trong Hình 44, thanh barrier và mặt phẳng gợi nên hình ảnh đường thẳng d và mặt phẳng (P). Cho biết đường thẳng d và mặt phẳng (P) có điểm chung hay không.
Hoạt động 1 trang 101 Toán 11 Tập 1 | Cánh diều Giải Toán 11
b) Cho đường thẳng d và mặt phẳng (P). Hãy cho biết các khả năng có thể xảy ra đối với số điểm chung của d và (P).
Lời giải:
a) Trong Hình 44 đường thẳng d và mặt phẳng (P) không có điểm chung.
b)
Hoạt động 1 trang 101 Toán 11 Tập 1 | Cánh diều Giải Toán 11
Ở Hình 45a): Đường thẳng d nằm trong mặt phẳng (P) nên có vô số điểm chung.
Ở Hình 45b): Đường thẳng d cắt mặt phẳng (P) tại một điểm nên có 1 điểm chung.
Ở Hình 45c): Đường thẳng d song song với mặt phẳng (P) nên không có điểm chung với nhau.
Luyện tập 1 trang 102 Toán 11 Tập 1: Quan sát các xà ngang trên sân tập thể dục Hình 47. Hãy cho biết ở vị trí tương đối của các xà ngang đó đối với mặt sàn.
Luyện tập 1 trang 102 Toán 11 Tập 1 | Cánh diều Giải Toán 11
Lời giải:
Vị trí tương đối của xà ngang với mặt sàn là đường thẳng song song với mặt phẳng.
II. Điều kiện và tính chất
Hoạt động 2 trang 102 Toán 11 Tập 1: Cho đường thẳng a không nằm trong mặt phẳng (P) và a song song với đường thẳng a’ nằm trong (P) (Hình 48). Gọi (Q) là mặt phẳng xác định bởi hai đường thẳng song song a, a’.
a) Giả sử a cắt (P) tại M. Đường thẳng a có cắt đường thẳng a’ tại M hay không?
b) Nêu vị trí tương đối của đường thẳng a và mặt phẳng (P). Vì sao?
Hoạt động 2 trang 102 Toán 11 Tập 1 | Cánh diều Giải Toán 11
Lời giải:
a) Do a’ ⊂ (P) và a’ ⊂ (Q) nên (P) ∩ (Q) = a’.
Mà a cắt (P) tại M nên M ∈ (P)
Lại có M ∈ a, a ⊂ (Q) nên M ∈ (Q)
Suy ra M là giao điểm của (P) và (Q).
Do đó giao tuyến a’ của hai mặt phẳng đi qua điểm M.
Vậy đường thẳng a cắt đường thẳng a’ tại M.
b) Theo câu a, nếu a cắt (P) tại M thì đường thẳng a và đường thẳng a’ cắt nhau tại M.
Điều này là mâu thuẫn với giả thiết là hai đường thẳng a và a’ song song.
Do đó a không có điểm chung với (P) nên a // (P).
Luyện tập 2 trang 102 Toán 11 Tập 1: Cho tứ diện ABCD. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, AD. Các đường thẳng MN, NP, PM có song song với mặt phẳng (BCD) không? Vì sao?
Lời giải:
Luyện tập 2 trang 102 Toán 11 Tập 1 | Cánh diều Giải Toán 11
• Xét ∆ABC có M, N lần lượt là trung điểm của AB, AC nên MN là đường trung bình của tam giác
Do đó MN // BC
Lại có BC ⊂ (BCD)
Suy ra MN // (BCD).
• Chứng minh tương tự ta cũng có NP // CD.
Mà CD ⊂ (BCD)
Suy ra NP // (BCD).
• Tương tự, MP // BD mà BD ⊂ (BCD) .
Suy ra MP // (BCD).
Hoạt động 3 trang 102, 103 Toán 11 Tập 1: Cho đường thẳng a song song với mặt phẳng (P). Cho mặt phẳng (Q) chứa a và cắt (P) theo giao tuyến b. (Hình 51).
a) Giả sử a cắt b tại M. Đường thẳng a có cắt mặt phẳng (P) tại M hay không?
b) Nêu vị trí tương đối của hai đường thẳng a và b. Vì sao?
Hoạt động 3 trang 102, 103 Toán 11 Tập 1 | Cánh diều Giải Toán 11
Lời giải:
a) Ta có a ∩ b = {M} nên M ∈ b
Mà b ⊂ (P), do đó M ∈ (P).
Lại có M ∈ a.
Vậy đường thẳng a cắt mặt phẳng (P) tại M.
b) Theo câu a, nếu a cắt b tại M thì a cắt (P) tại M, điều này mâu thuẫn với giả thiết đường thẳng a song song với mặt phẳng (P).
Do đó a và b không cắt nhau và cùng nằm trong mặt phẳng (Q).
Suy ra a // b.
Vậy hai đường thẳng a và b song song với nhau.
Luyện tập 3 trang 103 Toán 11 Tập 1: Ở Ví dụ 3, xác định giao tuyến của mặt phẳng (R) với các mặt phẳng (ABD), (BCD), (ACD).
Luyện tập 3 trang 103 Toán 11 Tập 1 | Cánh diều Giải Toán 11
Lời giải:
Luyện tập 3 trang 103 Toán 11 Tập 1 | Cánh diều Giải Toán 11
• Áp dụng định lí 2, ta có:
(R) đi qua M và song song với BD, mà BD ⊂ (ABD) nên mặt phẳng (R) cắt (ABD) theo giao tuyến a đi qua M và song song với BD.
• Gọi N là giao điểm của p và BC.
Khi đó N ∈ (R).
Áp dụng định lí 2, ta có:
(R) đi qua N và song song với BD, mà BD ⊂ (BCD) nên mặt phẳng (R) cắt (BCD) theo giao tuyến b đi qua N và song song với BD.
• Gọi P là giao điểm của a và AD, Q là giao điểm của b và CD.
Khi đó P ∈ (R) và P ∈ (ACD) nên P là giao điểm của (R) và (ACD);
            Q ∈ (R) và Q ∈ (ACD) nên Q là giao điểm của (R) và (ACD).
Vậy (R) ∩ (ACD) = PQ.
Hoạt động 4 trang 103 Toán 11 Tập 1: Cho hai mặt phẳng (P), (Q) cùng song song với đường thẳng a và (P) ∩ (Q) = b (Hình 54).
Hoạt động 4 trang 103 Toán 11 Tập 1 | Cánh diều Giải Toán 11
a) Lấy một điểm M trên đường thẳng b. Gọi b’, b” lần lượt là các giao tuyến của mặt phẳng (M, a) với (P) và mặt phẳng (M, a) với (Q). Cho biết b’ và b” có trùng với b hay không.
b) Nêu vị trí tương đối của hai đường thẳng a và b. Vì sao?  
Lời giải:
a) • Ta có: M ∈ b và (P) ∩ (Q) = b;
Suy ra M ∈ (P).
Mà M ∈ (M, a)
Do đó M là giao điểm của (P) và (M, a).
Lại có b’ = (P) ∩ (M, a)
Suy ra đường thẳng b’ đi qua M.
Tương tự ta cũng chứng minh được b’’ đi qua điểm M.
• Ta có: a // (P);
             a ⊂ (M, a)
             (M, a) ∩ (P) = b’
Do đó a // b’.
Tương tự ta cũng có a // b’’.
Do đó b’ // b’’.
Mặt khác: (P) ∩ (Q) = b;
                 (M, a) ∩ (P) = b’;
                 (M, a) ∩ (Q) = b’’;
                 b // b’’.
Do đó b // b’ // b’’.
Mà cả ba đường thẳng cùng đi qua điểm M nên ba đường thẳng này trùng nhau.
b) Vì a // b’ nên a // b (do b ≡ b’).
Luyện tập 4 trang 104 Toán 11 Tập 1: Trong Hình 56, hai mặt tường của căn phòng gợi nên hình ảnh hai mặt phẳng (P) và (Q) cắt nhau theo giao tuyến b, mép cột gợi nên hình ảnh đường thẳng a. Cho biết đường thẳng a có song song với giao tuyến b hay không.
Luyện tập 4 trang 104 Toán 11 Tập 1 | Cánh diều Giải Toán 11
Lời giải:
Ta có: a // (P);
           a // (Q);
           (P) ∩ (Q) = b.
Do đó theo hệ quả định lí 2 ta có a // b.
Bài tập
Bài 1 trang 104 Toán 11 Tập 1: Trong phòng họp của lớp, hãy nêu những hình ảnh về đường thẳng song song với mặt phẳng.
Lời giải:
Gợi ý những hình ảnh về đường thẳng song song với mặt phẳng: đường chân tường và trần nhà; mép cột tường và bức tường; …
Bài 2 trang 104 Toán 11 Tập 1: Trong Hình 57, khi cắt bánh sinh nhật, mặt cắt và mặt khay đựng bánh lần lượt gợi nên hình ảnh mặt phẳng (Q) và mặt phẳng (P); mép trên và mép dưới của lát cắt lần lượt gợi nên hình ảnh hai đường thẳng a và b trong đó a song song với mặt phẳng (P). Cho biết hai đường thẳng a, b có song song với nhau hay không.
Bài 2 trang 104 Toán 11 Tập 1 | Cánh diều Giải Toán 11
Lời giải:
Ta có: a // (P);
           a ⊂ (Q);
           (P) ∩ (Q) = b.    
Do đó theo định lí 2, a // b.
Vậy hai đường thẳng a, b song song với nhau.
Bài 3 trang 104 Toán 11 Tập 1: Cho tứ diện ABCD. Gọi G là trọng tâm của tam giác ABD, điểm I nằm trên cạnh BC sao cho BI = 2IC. Chứng minh rằng IG song song với mặt phẳng (ACD).
Lời giải:
Bài 3 trang 104 Toán 11 Tập 1 | Cánh diều Giải Toán 11
Gọi M là trung điểm của AD.
• Xét ∆ABD có G là trọng tâm tam giác nên BGGM=21 .
Theo bài, BI = 2IC nên BIIC=21
• Trong mặt phẳng (BCM):
Xét ∆BCM có: BIIC=BGGM=21 , suy ra IG // CM (định lí Thalès đảo)
• Ta có: IG // CM; CM ⊂ (ACD)
Do đó IG // (ACD).
Bài 4 trang 104 Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của AB và CD. Chứng minh rằng đường thẳng MN song song với giao tuyến d của hai mặt phẳng (SBC) và (SAD).
Lời giải:
Bài 4 trang 104 Toán 11 Tập 1 | Cánh diều Giải Toán 11
• Ta có: S ∈ (SAD) và S ∈ (SBC) nên S là giao điểm của (SAD) và (SBC).
Lại có: AD // BC (do ABCD là hình bình hành);
            AD ⊂ (SAD);
            BC ⊂ (SBC).
Do đó giao tuyến d của hai mặt phẳng (SAD) và (SBC) là đường thẳng đi qua S và song song với AD, BC.
• Vì M, N lần lượt là trung điểm của AB và CD nên MN là đường trung bình
Do đó MN // BC // AD.
Ta có: MN // BC mà BC ⊂ (SBC) nên MN // (SBC);
           MN // AD mà AD ⊂ (SAD) nên MN // (SAD).
Có: MN // (SBC);
       MN // (SAD);
       (SAD) ∩ (SBC) = d
Suy ra MN // d.
Bài 5 trang 104 Toán 11 Tập 1: Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Gọi M, N lần lượt là trọng tâm của hai tam giác ABF và ABC. Chứng minh rằng đường thẳng MN song song với mặt phẳng (ACF).
Lời giải:
Bài 5 trang 104 Toán 11 Tập 1 | Cánh diều Giải Toán 11
Gọi I là trung điểm của AB.
Xét DABF có M là trọng tâm của tam giác nên FMMI=21 ;
Xét DABC có N là trọng tâm của tam giác nên NCNI=21 ;
Trong mặt phẳng ACF, xét ∆ACF có FMMI=NCNI=21
Suy ra MN // FC (theo định lí Thalès)
Mà FC ⊂ (ACF).
Do đó MN // (ACF).
Bài 6 trang 104 Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Lấy điểm M trên cạnh AD sao cho AD = 3AM. Gọi G, N lần lượt là trọng tâm của tam giác SAB, ABC.
a) Tìm giao tuyến của hai mặt phẳng (SAB) và (SCD).
b) Chứng minh rằng MN song song với mặt phẳng (SCD) và NG song song với mặt phẳng (SAC).
Lời giải:
Bài 6 trang 104 Toán 11 Tập 1 | Cánh diều Giải Toán 11
a) Ta có: S ∈ (SAB) và S ∈ (SCD) nên S là giao điểm của (SAB) và (SCD).
Lại có: AB // CD (do ABCD là hình bình hành);
            AB ⊂ (SAB);
            CD ⊂ (SCD).
Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng d đi qua S và song song với AB, CD.
b) • Gọi O là tâm của hình bình hành, khi đó BO = OD = 12 BD.
Xét DABC có N là trọng tâm của tam giác nên BNBO=23  do đó BNBD=BN2BO=12.23=13 .
Theo bài, AD = 3AM nên AMAD=13
Trong mặt phẳng (ABCD), xét ∆ABD có  AMAD=BNBD=13
Do đó MN // AB (theo định lí Thalès đảo)
Trong mặt phẳng (ABCD) có: AB // CD và MN // AB nên MN // CD.
Lại có CD ⊂ (SCD)
Do đó MN // (SCD).
• Gọi I là trung điểm của SA.
Xét ∆SAB có G là trọng tâm của tam giác nên BGBI=23
Trong (BIO), xét DBIO có: BGBI=BNBO=23
Suy ra GN // IO (theo định lí Thalès đảo)
Mà IO ⊂ (SAC) nên GN // (SAC).
Xem thêm các bài giải SGK Toán lớp 11 Cánh diều hay, chi tiết khác:
Bài 2: Hai đường thẳng song song trong không gian
Bài 3: Đường thẳng và mặt phẳng song song
Bài 4: Hai mặt phẳng song song
Bài 5: Hình lăng trụ và hình hộp
Bài 6: Phép chiếu song song. Hình biểu diễn của một hình không gian

==== ~~~~~~ ====

Tags : Tags Toán 11
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Phân số nào dưới đây biểu diễn số thập phân 0.016?

Next post

Giải Chuyên đề Toán 11 Chân trời sáng tạo Bài 1: Hình biểu diễn của một hình, khối

Bài liên quan:

Giải SGK Toán 11 Bài 1 (Cánh diều): Góc lượng giác. Giá trị lượng giác của góc lượng giác

Giải SGK Toán 11 Bài 2 (Cánh diều): Các phép biến đổi lượng giác

Giải SGK Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị

Giải SGK Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản

Giải SGK Toán 11 (Cánh diều) Bài tập cuối chương 1 trang 41

Giải SGK Toán 11 Bài 1 (Cánh diều): Dãy số

Giải SGK Toán 11 Bài 2 (Cánh diều): Cấp số cộng

Giải SGK Toán 11 Bài 3 (Cánh diều): Cấp số nhân

Leave a Comment Hủy

Mục lục

  1. Giải SGK Toán 11 Bài 1 (Cánh diều): Góc lượng giác. Giá trị lượng giác của góc lượng giác
  2. Giải SGK Toán 11 Bài 2 (Cánh diều): Các phép biến đổi lượng giác
  3. Giải SGK Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị
  4. Giải SGK Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản
  5. Giải SGK Toán 11 (Cánh diều) Bài tập cuối chương 1 trang 41
  6. Giải SGK Toán 11 Bài 1 (Cánh diều): Dãy số
  7. Giải SGK Toán 11 Bài 2 (Cánh diều): Cấp số cộng
  8. Giải SGK Toán 11 Bài 3 (Cánh diều): Cấp số nhân
  9. Giải SGK Toán 11 (Cánh diều) Bài tập cuối chương 2 trang 57
  10. Giải SGK Toán 11 Bài 1 (Cánh diều): Giới hạn của dãy số
  11. Giải SGK Toán 11 Bài 2 (Cánh diều): Giới hạn của hàm số
  12. Giải SGK Toán 11 Bài 3 (Cánh diều): Hàm số liên tục
  13. Giải SGK Toán 11 (Cánh diều) Bài tập cuối chương 3 trang 79
  14. Giải SGK Toán 11 Bài 1 (Cánh diều): Đường thẳng và mặt phẳng trong không gian
  15. Giải SGK Toán 11 Bài 2 (Cánh diều): Hai đường thẳng song song trong không gian
  16. Giải SGK Toán 11 Bài 4 (Cánh diều): Hai mặt phẳng song song
  17. Giải SGK Toán 11 Bài 5 (Cánh diều): Hình lăng trụ và hình hộp
  18. Giải SGK Toán 11 Bài 6 (Cánh diều): Phép chiếu song song. Hình biểu diễn của một hình không gian
  19. Giải SGK Toán 11 (Cánh diều): Bài tập cuối chương 4
  20. Giải SGK Toán 11 Bài 1 (Cánh diều): Phép tính lũy thừa với số mũ thực
  21. Giải SGK Toán 11 Bài 2 (Cánh diều): Phép tính lôgarit
  22. Giải SGK Toán 11 Bài 3 (Cánh diều): Hàm số mũ. Hàm số lôgarit
  23. Giải SGK Toán 11 Bài 4 (Cánh diều): Phương trình, bất phương trình mũ và lôgarit
  24. Giải SGK Toán 11 (Cánh diều) Bài tập cuối chương 6 trang 55
  25. Giải SGK Toán 11 Bài 1 (Cánh diều): Định nghĩa đạo hàm. Ý nghĩa hình học của đạo hàm
  26. Giải SGK Toán 11 Bài 2 (Cánh diều): Các quy tắc tính đạo hàm
  27. Giải SGK Toán 11 Bài 3 (Cánh diều): Đạo hàm cấp hai
  28. Giải SGK Toán 11 (Cánh diều): Bài tập cuối chương 7
  29. Giải SGK Toán 11 Bài 1 (Cánh diều): Hai đường thẳng vuông góc
  30. Giải SGK Toán 11 Bài 2 (Cánh diều): Đường thẳng vuông góc với mặt phẳng
  31. Giải SGK Toán 11 Bài 3 (Cánh diều): Góc giữa đường thẳng và mặt phẳng. Góc nhị diện
  32. Giải SGK Toán 11 Bài 4 (Cánh diều): Hai mặt phẳng vuông góc
  33. Giải SGK Toán 11 Bài 5 (Cánh diều): Khoảng cách
  34. Giải SGK Toán 11 Bài 6 (Cánh diều): Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối
  35. Giải SGK Toán 11 (Cánh diều): Bài tập cuối chương 8
  36. Giải SGK Toán 11 (Cánh diều): Chủ đề 2: Tính thể tích một số hình khối trong thực tiễn
  37. Hoạt động trải nghiệm lớp 11 Cánh diều | HĐTN lớp 11 Cánh diều | Giải HĐTN 11 | Soạn, Giải bài tập Hoạt động trải nghiệm 11 hay nhất | HĐTN lớp 11 CD

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán