Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SGK Toán 11 - Cánh diều

Giải SGK Toán 11 Bài 4 (Cánh diều): Phương trình, bất phương trình mũ và lôgarit

By admin 09/01/2024 0

Giải bài tập Toán lớp 11 Bài 4: Phương trình, bất phương trình mũ và lôgarit

Câu hỏi khởi động trang 48 Toán 11 Tập 2: Dân số được ước tính theo công thức S = A . ert, trong đó A là dân số của năm lấy làm mốc tính, S là dân số sau t năm, r là tỉ lệ tăng dân số hằng năm.

Hỏi sau bao nhiêu năm, dân số sẽ gấp đôi dân số của năm lấy làm mốc tính?

Lời giải:

Sau bài học này, chúng ta sẽ giải quyết được câu hỏi trên như sau:

Để dân số S’ gấp đôi dân số của năm lấy làm mốc tính S thì S = 2Anên ta có:

Ta có 2A = A . ert

Suy ra ert = 2

Do đó rt = ln2

Nên t=ln2r

Vậy sau ln2r thì dân số sẽ gấp đôi dân số của năm lấy làm mốc tính.

I. Phương trình mũ và phương trình Lôgarit

Hoạt động 1 trang 48 Toán 11 Tập 2: Trong bài toán ở phần mở đầu, giả sử r = 1,14% / năm.

a) Viết phương trình thể hiện dân số sau t năm gấp đôi dân số ban đầu.

b) Phương trình vừa tìm được có ẩn là gì và nằm ở vị trí nào của luỹ thừa?

Lời giải:

a) Ta có công thức S = A . ert, trong đó:

⦁ A là dân số của năm lấy làm mốc tính;

⦁ S là dân số sau t năm;

⦁ r là tỉ lệ tăng dân số hằng năm, và r = 1,14%.

Để dân số sau t năm gấp đôi dân số ban đầu thì S = 2A

Suy ra 2A = A . e1,14%t nên e0,0114t = 2.

Vậy phương trình thể hiện dân số sau t năm gấp đôi dân số ban đầu là e0,0114t = 2.

b) Phương trình vừa tìm được có ẩn là t nằm ở số mũ của lũy thừa.

Luyện tập 1 trang 48 Toán 11 Tập 2: Cho hai ví dụ về phương trình mũ.

Lời giải:

Hai ví dụ về phương trình mũ là: 3x+1 = 9 và 52x = 25.

Hoạt động 2 trang 48 Toán 11 Tập 2: a) Vẽ đồ thị hàm số y = 3x và đường thẳng y = 7.

b) Nhận xét về số giao điểm của hai đồ thị trên. Từ đó, hãy nêu nhận xét về số nghiệm của phương trình 3x = 7.

Lời giải:

a)⦁ Xét hàm số y = 3x có cơ số 3 > 1 nên ta có bảng biến thiên như sau:

Hoạt động 2 trang 48 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Đồ thị của hàm số y = 3x là một đường cong liền nét đi qua các điểm A−1;13;  B0;1;  C1;3;  D2;9 (hình vẽ).

⦁ Xét hàm số y = 7 có đồ thị là đường thẳng đi qua các điểm có tung độ bằng 7 (hình vẽ).

Hoạt động 2 trang 48 Toán 11 Tập 2 | Cánh diều Giải Toán 11

b) Đồ thị hàm số y = 3x cắt đường thẳng y = 7 tại 1 điểm.

Vậy phương trình 3x = 7 có 1 nghiệm.

Luyện tập 2 trang 49 Toán 11 Tập 2: Giải mỗi phương trình sau:

a) 916 – x = 27x + 4; b) 16x – 2 = 0,25 . 2–x + 4.

Lời giải:

a) 916 – x = 27x + 4

⇔32(16 – x) = 33(x + 4)

⇔ 2(16 – x) = 3(x + 4)

⇔ 32 – 2x = 3x + 12

⇔ –5x = –20

⇔ x = 4.

Vậy phương trình đã cho có nghiệm là x = 4.

b) 16x – 2 = 0,25 . 2–x + 4

⇔24(x – 2) = 0,25 . 2–x + 4

⇔24(x – 2): 2–x + 4= 0,25

⇔24x–8+x–4=14

⇔25x – 12= 2−2

⇔ 5x – 12 = −2

⇔ 5x = 10

⇔ x = 2.

Vậy phương trình đã cho có nghiệm là x = 2.

Hoạt động 3 trang 49 Toán 11 Tập 2: Chỉ số thay đổi pH của một dung dịch được tính theo công thức: pH = – log[H+] (trong đó [H+] chỉ nồng độ ion hydrogen). Đo chỉ số pH của một số mẫu nước sông, ta có kết quả là pH = 6,1.

a) Viết phương trình thể hiện nồng độ x của hydrogen [H+] trong mẫu nước sông đó.

b) Phương trình vừa tìm được có ẩn là gì và nằm ở vị trí nào của lôgarit?

Lời giải:

a) Ta có pH = 6,1 suy ra – log[H+] = 6,1 ⇔– logx = 6,1.

Vậy phương trình thể hiện nồng độ x của hydrogen [H+] trong mẫu nước sông đó là:

– logx = 6,1.

b) Phương trình vừa tìm được có ẩn x nằm trong biểu thức dưới dấu lôgarit.

Luyện tập 3 trang 50 Toán 11 Tập 2: Cho hai ví dụ về phương trình lôgarit.

Lời giải:

Hai ví dụ về phương trình lôgarit là: log2(x + 3) = 8 và log3(x2 + x + 1) = 2.

Hoạt động 4 trang 50 Toán 11 Tập 2:

a) Vẽ đồ thị hàm số y = log4x và đường thẳng y = 5.

b) Nhận xét về số giao điểm của hai đồ thị trên. Từ đó, hãy nêu nhận xét về số nghiệm của phương trình log4x = 5.

Lời giải:

a)⦁ Xét hàm số y = log4x có cơ số 4 > 1 nên ta có bảng biến thiên như sau:

Hoạt động 4 trang 50 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Đồ thị của hàm số y = log4x là một đường cong liền nét đi qua các điểm A12;−12;  B1;0;  C2;12;  D4;1;  E8;32 (hình vẽ).

⦁ Xét hàm số y = 5 có đồ thị là đường thẳng đi qua các điểm có tung độ bằng 5 (hình vẽ).

Hoạt động 4 trang 50 Toán 11 Tập 2 | Cánh diều Giải Toán 11

b) Từ bảng biến thiên của hàm số y = log4x ta thấy đường thẳng y = 5 cắt đồ thị hàm số y = log4x tại 1 điểm.

Khi đó phương trình log4x = 5 có 1 nghiệm.

Luyện tập 4 trang 51 Toán 11 Tập 2: Giải mỗi phương trình sau:

a) log52x−4+log15x−1=0;

b) log2x + log4x = 3.

Lời giải:

a) log52x−4+log15x−1=0

Luyện tập 4 trang 51 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Vậy phương trình có nghiệm x=3.

b) log2x + log4x = 3

Luyện tập 4 trang 51 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Vậy phương trình có nghiệm x=4.

II. Bất phương trình mũ và bất phương trình Logarit

Hoạt động 5 trang 51 Toán 11 Tập 2: Quan sát Hình 11 và nêu nhận xét về tính đồng biến, nghịch biến của hàm số y=12x. Từ đó, hãy tìm x sao cho 12x>2.

Hoạt động 5 trang 51 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Lời giải:

Từ đồ thị hàm số y=12xở Hình 11 ta thấy hàm số này nghịch biến trên ℝ.

Dựa vào đồ thị ta thấy: đồ thị hàm số y=12x ở phía trên đường thẳng y = 2 khi và chỉ khi x < −1.

Do đó 12x>2⇔x<−1.

Luyện tập 5 trang 52 Toán 11 Tập 2: Cho hai ví dụ về bất phương trình mũ cơ bản.

Lời giải:

Hai ví dụ về bất phương trình mũ cơ bản là 3x < 27 và 4x ≥ 16.

Luyện tập 6 trang 52 Toán 11 Tập 2: Giải mỗi bất phương trình sau:

a) 7x+3 < 343; b) 14x≥3.

Lời giải:

Ta có:

a) 7x+3 < 343

⇔x + 3 < log7343

⇔x + 3 < 3

⇔x < 0

Vậy tập nghiệm của bất phương trình là (–∞; 0).

b) 14x≥3

⇔x≤log143

Vậy tập nghiệm của bất phương trình là Luyện tập 6 trang 52 Toán 11 Tập 2 | Cánh diều Giải Toán 11.

Hoạt động 6 trang 53 Toán 11 Tập 2: Quan sát Hình 12 và nêu nhận xét về tính đồng biến, nghịch biến của hàm số lôgarit y = log2x. Từ đó, hãy tìm x sao cho log2x > 1.

Hoạt động 6 trang 53 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Lời giải:

Hàm số y = log2x đồng biến trên tập xác định (0; +∞).

Dựa vào đồ thị ta thấy đồ thị hàm số y = log2x ở phía trên đường thẳng y = 1 khi và chỉ khi x > 2.

Vậy log2x > 1 ⇔ x > 2.

Luyện tập 7 trang 53 Toán 11 Tập 2: Cho hai ví dụ về bất phương trình logarit cơ bản.

Lời giải:

Hai ví dụ về bất phương trình logarit cơ bản là logx > 1 và log3x≤ 6.

Luyện tập 8 trang 54 Toán 11 Tập 2: Giải mỗi bất phương trình sau:

a) log3x < 2; b) log14x−5≥−2.

Lời giải:

a) log3x < 2

⇔ 0 < x < 32

⇔ 0 < x < 9

Vậy tập nghiệm của bất phương trình là (0; 9).

b) log14x−5≥−2

⇔0<x−5≤14−2

⇔ 0 < x – 5 ≤ 16

⇔ 5 < x ≤ 21

Vậy tập nghiệm của bất phương trình là (5; 21].

Bài tập

Bài 1 trang 54 Toán 11 Tập 2: Giải mỗi phương trình sau:

a) (0,3)x–3 = 1; b) 53x–2 = 25;

c) 9x–2 = 243x+1; d) log12x+1=−3;

e) log5(3x – 5) = log5(2x + 1); g) log17x+9=log172x−1.

Lời giải:

a) (0,3)x–3 = 1⇔ x – 3 = log0,31 ⇔x – 3 = 0 ⇔x = 3.

Vậy phương trình đã cho có nghiệm là x=3.

b) 53x–2 = 25

⇔53x–2 = 52

⇔ 3x – 2 = 2

⇔x=43

Vậy phương trình đã cho có nghiệm là x=43.

c) 9x–2 = 243x+1⇔32x–4 = 35x+5

⇔ 2x – 4 = 5x + 5 ⇔ 3x = –9 ⇔ x = –3

Vậy phương trình đã cho có nghiệm là x = –3.

d) log12x+1=−3⇔x+1=12−3⇔x+1=8⇔x=7

Vậy phương trình đã cho có nghiệm là x=7.

e) log5(3x – 5) = log5(2x + 1)

Bài 1 trang 54 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Vậy phương trình đã cho có nghiệm là x=6.

f) log17x+9=log172x−1

Bài 1 trang 54 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Vậy phương trình đã cho có nghiệm là x=10.

Bài 2 trang 55 Toán 11 Tập 2: Giải mỗi bất phương trình sau:

a) 3x>1243; b) 233x−7≤32;

c) 4x+3 ≥ 32x; d) log(x – 1) < 0;

e) log152x−1≥log15x+3; g) ln(x + 3) ≥ ln(2x – 8).

Lời giải:

a) 3x>1243⇔x>log31243⇔x>log3135⇔x>log33−5⇔x>−5

Vậy bất phương trình đã cho có tập nghiệm là (–5; +∞).

b) 233x−7≤32⇔3x−7≥log2332

⇔3x−7≥log2323−1⇔3x−7≥−1⇔x≥2.

Vậy bất phương trình đã cho có tập nghiệm là [2; +∞).

c) 4x+3 ≥ 32x ⇔ x + 3 ≥ log432x ⇔ x + 3 ≥ xlog432

⇔x+3≥xlog2225⇔x+3≥x⋅12⋅5⋅log22

⇔x+3≥52x⇔−32x≥−3⇔x≤2.

Vậy bất phương trình đã cho có tập nghiệm là (−∞; 2].

d) log(x – 1) < 0 ⇔0 < x – 1 < 100

⇔0 < x – 1 < 1 ⇔1 < x < 2

Vậy bất phương trình đã cho có tập nghiệm là (1; 2).

e) log152x−1≥log15x+3

Bài 2 trang 55 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Vậy bất phương trình đã cho có tập nghiệm là Bài 2 trang 55 Toán 11 Tập 2 | Cánh diều Giải Toán 11

g) ln(x + 3) ≥ ln(2x – 8)

Bài 2 trang 55 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Vậy bất phương trình đã cho có tập nghiệm là (4; 11].

Bài 3 trang 55 Toán 11 Tập 2: Một người gửi ngân hàng 100 triệu đồng theo hình thức lãi kép có kì hạn là 12 tháng với lãi suất x% / năm (x > 0). Sau 3 năm, người đó rút được cả gốc và lãi là 119,1016 triệu đồng. Tìm x, biết rằng lãi suất không thay đổi qua các năm và người đó không rút tiền ra trong suốt quá trình gửi.

Lời giải:

Công thức tính số tiền rút được (cả gốc và lãi) sau n năm là: 100(1 + x%)n (triệu đồng).

Sau 3 năm, người đó rút được cả gốc và lãi là 119,1016 triệu đồng nên ta có:

100(1 + x%)3 = 119,1016

⇔1+x1003=1,191016

⇔1+x100=1,1910163=1,06

⇔x100=0,06⇔x=6 (thỏa mãn x > 0).

Vậy lãi xuất là 6% / năm.

Bài 4 trang 55 Toán 11 Tập 2: Sử dụng công thức tính mức cường độ âm L ở Ví dụ 14, hãy tính mức cường độ âm mà tai người có thể chịu đựng được, biết rằng giá trị cực đại của mức cường độ âm mà tai người có thể chịu đựng được là 130dB.

Lời giải:

Ta có công thức tính mức cường độ âm L (đơn vị dB) là L=10logI10−12

Do giá trị cực đại của mức cường độ âm mà tai người có thể chịu đựng được là 130dB nên ta có L ≤ 130

⇔10logI10−12≤130⇔logI10−12≤13

⇔I10−12≤1013⇔I≤1013.10−12⇔I≤10

Vậy cường độ âm mà tai người có thể chịu đựng được là 10 W/m

Xem thêm các bài giải SGK Toán lớp 11 Cánh diều hay, chi tiết khác:

Bài 3: Hàm số mũ. Hàm số lôgarit

Bài 4: Phương trình mũ, bất phương trình mũ và lôgarit

Bài tập cuối chương 6

Bài 1: Định nghĩa đạo hàm. Ý nghĩa hình học của đạo hàm

Bài 2: Các quy tắc tính đạo hàm

.

Tags : Tags 1. Giải sgk Toán 11 Chân trời sáng tạo Giải bài tập Toán 11 Tập 1   chi tiết)   Tập 2 Chân trời sáng tạo (hay
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Sách bài tập Toán 11 Bài 2 (Cánh diều): Biến cố hợp và biến cố giao. Biến cố độc lập. Các quy tắc tính xác suất

Next post

Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 5 trang 20

Bài liên quan:

Giải SGK Toán 11 Bài 1 (Cánh diều): Góc lượng giác. Giá trị lượng giác của góc lượng giác

Giải SGK Toán 11 Bài 2 (Cánh diều): Các phép biến đổi lượng giác

Giải SGK Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị

Giải SGK Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản

Giải SGK Toán 11 (Cánh diều) Bài tập cuối chương 1 trang 41

Giải SGK Toán 11 Bài 1 (Cánh diều): Dãy số

Giải SGK Toán 11 Bài 2 (Cánh diều): Cấp số cộng

Giải SGK Toán 11 Bài 3 (Cánh diều): Cấp số nhân

Leave a Comment Hủy

Mục lục

  1. Giải SGK Toán 11 Bài 1 (Cánh diều): Góc lượng giác. Giá trị lượng giác của góc lượng giác
  2. Giải SGK Toán 11 Bài 2 (Cánh diều): Các phép biến đổi lượng giác
  3. Giải SGK Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị
  4. Giải SGK Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản
  5. Giải SGK Toán 11 (Cánh diều) Bài tập cuối chương 1 trang 41
  6. Giải SGK Toán 11 Bài 1 (Cánh diều): Dãy số
  7. Giải SGK Toán 11 Bài 2 (Cánh diều): Cấp số cộng
  8. Giải SGK Toán 11 Bài 3 (Cánh diều): Cấp số nhân
  9. Giải SGK Toán 11 (Cánh diều) Bài tập cuối chương 2 trang 57
  10. Giải SGK Toán 11 Bài 1 (Cánh diều): Giới hạn của dãy số
  11. Giải SGK Toán 11 Bài 2 (Cánh diều): Giới hạn của hàm số
  12. Giải SGK Toán 11 Bài 3 (Cánh diều): Hàm số liên tục
  13. Giải SGK Toán 11 (Cánh diều) Bài tập cuối chương 3 trang 79
  14. Giải SGK Toán 11 Bài 1 (Cánh diều): Đường thẳng và mặt phẳng trong không gian
  15. Giải SGK Toán 11 Bài 2 (Cánh diều): Hai đường thẳng song song trong không gian
  16. Giải SGK Toán 11 Bài 3 (Cánh diều): Đường thẳng và mặt phẳng song song
  17. Giải SGK Toán 11 Bài 4 (Cánh diều): Hai mặt phẳng song song
  18. Giải SGK Toán 11 Bài 5 (Cánh diều): Hình lăng trụ và hình hộp
  19. Giải SGK Toán 11 Bài 6 (Cánh diều): Phép chiếu song song. Hình biểu diễn của một hình không gian
  20. Giải SGK Toán 11 (Cánh diều): Bài tập cuối chương 4
  21. Giải SGK Toán 11 Bài 1 (Cánh diều): Phép tính lũy thừa với số mũ thực
  22. Giải SGK Toán 11 Bài 2 (Cánh diều): Phép tính lôgarit
  23. Giải SGK Toán 11 Bài 3 (Cánh diều): Hàm số mũ. Hàm số lôgarit
  24. Giải SGK Toán 11 (Cánh diều) Bài tập cuối chương 6 trang 55
  25. Giải SGK Toán 11 Bài 1 (Cánh diều): Định nghĩa đạo hàm. Ý nghĩa hình học của đạo hàm
  26. Giải SGK Toán 11 Bài 2 (Cánh diều): Các quy tắc tính đạo hàm
  27. Giải SGK Toán 11 Bài 3 (Cánh diều): Đạo hàm cấp hai
  28. Giải SGK Toán 11 (Cánh diều): Bài tập cuối chương 7
  29. Giải SGK Toán 11 Bài 1 (Cánh diều): Hai đường thẳng vuông góc
  30. Giải SGK Toán 11 Bài 2 (Cánh diều): Đường thẳng vuông góc với mặt phẳng
  31. Giải SGK Toán 11 Bài 3 (Cánh diều): Góc giữa đường thẳng và mặt phẳng. Góc nhị diện
  32. Giải SGK Toán 11 Bài 4 (Cánh diều): Hai mặt phẳng vuông góc
  33. Giải SGK Toán 11 Bài 5 (Cánh diều): Khoảng cách
  34. Giải SGK Toán 11 Bài 6 (Cánh diều): Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối
  35. Giải SGK Toán 11 (Cánh diều): Bài tập cuối chương 8
  36. Giải SGK Toán 11 (Cánh diều): Chủ đề 2: Tính thể tích một số hình khối trong thực tiễn
  37. Hoạt động trải nghiệm lớp 11 Cánh diều | HĐTN lớp 11 Cánh diều | Giải HĐTN 11 | Soạn, Giải bài tập Hoạt động trải nghiệm 11 hay nhất | HĐTN lớp 11 CD

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán