Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 11

20 Bài tập Giới hạn của hàm số (sách mới) có đáp án – Toán 11

By admin 09/10/2023 0

Bài tập Toán 11 Giới hạn của hàm số

A. Bài tập Giới hạn của hàm số

Bài 1: Tính các giới hạn sau:

a) limx→3x2+12x;

b) limx→1x2+x−2x−1.

Hướng dẫn giải

a) Lý thuyết Toán 11 Kết nối tri thức Bài 16: Giới hạn của hàm số

=3⋅3+123=53

b) Vì (x – 1) → 0 hay khi x → 1, nên ta chưa thể áp dụng ngay quy tắc tính giới hạn của hàm số tại một điểm.

Nhưng với x ≠ 1, ta có:

limx→1x2+x−2x−1=Lý thuyết Toán 11 Kết nối tri thức Bài 16: Giới hạn của hàm số=limx→1(x+2) = 3.

Bài 2: Tìm các giới hạn một bên:

a) limx→1+x−3x−1;

b) limx→4−x2−2x+34−x.

Hướng dẫn giải

a) Ta có: limx→1+(x-1) = 0 và x – 1 > 0 với mọi x > 1

limx→1+(x-3) = 1-3 = -2 <0

Do đó: limx→1+x−3x−1 = – ∞.

b) Ta có: limx→4−(4-x) = 0 và 4 – x > 0 với mọi x < 4

limx→4−(x2-2x+3) = 42-8+3 = 11 > 0

Do đó: limx→4−x2−2x+34−x = +∞.

Bài 3: Tính các giới hạn sau:

a) limx→+∞(x3-2x);

b) limx→−∞(x3-3x);

c) Lý thuyết Toán 11 Kết nối tri thức Bài 16: Giới hạn của hàm số.

Hướng dẫn giải

a) Lý thuyết Toán 11 Kết nối tri thức Bài 16: Giới hạn của hàm số

b) Lý thuyết Toán 11 Kết nối tri thức Bài 16: Giới hạn của hàm số

c) Ta có: limx→1−(x-1) = 0 và x – 1 < 0 với mọi x < 1.

limx→1−(2x – 4) = 2.1 – 4 = -2<0.

Do đó, Lý thuyết Toán 11 Kết nối tri thức Bài 16: Giới hạn của hàm số

Bài 4: Cho hàm số f(x) = 2x2−2x−1 và g(x) = x + 3. Khẳng định nào sau đây là sai?

a) f(x) = g(x).

b) limx→1f(x)=limx→1g(x).

Hướng dẫn giải

a) Biểu thức f(x) có nghĩa khi x ≠ 1.

Ta có: f(x) = Lý thuyết Toán 11 Kết nối tri thức Bài 16: Giới hạn của hàm số = 2(x+1) = 2x+2 với mọi x ≠ 1.

Biểu thức g(x) có nghĩa với mọi x.

Do đó f(x) ≠ g(x). Suy ra khẳng định a) là khẳng định sai.

b) limx→1f(x) = limx→1(2x+2) = 4

limx→1g(x) = limx→1(x+3) = 4

Vậy limx→1f(x) = limx→1g(x), do đó khẳng định b) là khẳng định đúng.

Bài 5. Tính các giới hạn sau:

a) limx→24x−4−xx2−4 ;

b) limx→13x−23−x3x+1−2 .

Hướng dẫn giải

Lý thuyết Toán 11 Chân trời sáng tạo Bài 2: Giới hạn của hàm số

Lý thuyết Toán 11 Chân trời sáng tạo Bài 2: Giới hạn của hàm số

Bài 6. Tìm các giới hạn sau:

a) A = limx→+∞x(4x2+9−2x);

b) B = limx→−∞(x2−2x+2−x).

Hướng dẫn giải

Lý thuyết Toán 11 Chân trời sáng tạo Bài 2: Giới hạn của hàm số

Lý thuyết Toán 11 Chân trời sáng tạo Bài 2: Giới hạn của hàm số

=limx→−∞2+2−x1−2x+2x2−1=+∞

Bài 7. Chứng minh không tồn tại giới hạn của hàm số f(x) = sin1x khi x tiến tới 0.

Hướng dẫn giải

Xét hai dãy số xn=12nπ; yn=1π2+2nπ

Suy ra  limxn=lim12nπ=12πlim1n=12π . 0=0

Và limyn=lim1π2+2nπ=1π2+2πlimn=0

Khi đó ta xét:

• lim f(xn) = limsin (2nπ) = 0;

• lim f (yn) = limsin (π2+2nπ) = 1.

Do lim f(xn) ≠ lim f (yn) (0 ≠ 1) nên hàm số f(x) = sin1x  không tồn tại giới hạn khi x tiến tới 0.

Bài 8. Cho f(x) =1 – x và g(x) = 2x3. Tính các giới hạn sau:

Lý thuyết Toán 11 Cánh diều Bài 2: Giới hạn của hàm số.

Hướng dẫn giải

Lý thuyết Toán 11 Cánh diều Bài 2: Giới hạn của hàm số.

Bài 9. Sử dụng định nghĩa tìm giới hạn của hàm số:

a) limx→1x3;

b) limx→−24−x22+x.

Hướng dẫn giải

a) Giả sử (xn) là một dãy bất kì và xn → 1 khi n → +∞.

Khi đó limxn3=13=1.

Vậy limx→1x3=1.

b) Giả sử (xn) là một dãy bất kì thỏa mãn xn ≠ –2 và xn → –2 khi n → +∞.

Lý thuyết Toán 11 Cánh diều Bài 2: Giới hạn của hàm số

Vậy limx→−24−x22+x=4.

Bài 10. Tìm giới hạn của các hàm số sau:

a) Lý thuyết Toán 11 Cánh diều Bài 2: Giới hạn của hàm số;

b) limx→1x2+x−2x−1;

c) limx→−∞x+2x−1

Hướng dẫn giải

Lý thuyết Toán 11 Cánh diều Bài 2: Giới hạn của hàm số.

B. Lý thuyết Giới hạn của hàm số

1. Giới hạn hữu hạn của hàm số tại một điểm

Cho điểm x0 thuộc K và hàm số y = f(x) xác định trên K hoặc K \ {x0}.

Ta nói hàm số y = f(x) có giới hạn hữu hạn là số L khi x dần tới x0 nếu với dãy số (xn) bất kì, xn ∈ K \ {x0} và xn → x0, thì f(xn) → L.

Kí hiệu:  hay f(x) → L khi x → x0.

Ví dụ: Cho hàm số f(x) = x3−1x−1. Tìm limx→1fx .

Hướng dẫn giải

Hàm số y = f(x) xác định trên ℝ \ {1}.

Giả sử (xn) là dãy số bất kì thỏa mãn xn ≠ 1 với mọi n và xn → 1 khi n → +∞.

Giới hạn của hàm số (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Vậy limx→1fx=3.

Nhận xét:

• limx→x0x=x0 ;

• limx→x0c=c  (c là hằng số).

2. Các phép toán về giới hạn hữu hạn của hàm số

a) Cho limx→x0f(x) = L và  limx→x0g(x) = M. Khi đó:

• limx→x0[ f(x) + g(x)] = L + M

• limx→x0[ f(x) – g(x)] = L – M

• limx→x0[ f(x) . g(x)] = L . M

Giới hạn của hàm số (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

b) Nếu f(x) ≥ 0 và limx→x0f(x) = L thì L ≥ 0 và limx→x0f(x)=L

(Dấu của f (x) được xét trên khoảng tìm giới hạn, x ≠ x0).

Nhận xét:

• limx→x0xk=x0k , k là số nguyên dương;

• limx→x0[cf(x) = c limx→x0 f(x)  ( c∈ℝ, nếu tồn tại limx→x0f(x) ∈ℝ) .

Ví dụ: Tìm các giới hạn sau:

a) limx→−12x2+4x−5 ;                          

b) limx→22x+5−3x−2 .

Hướng dẫn giải

a) limx→−12x2+4x−5=limx→−12x2+limx→−14x−limx→−15

=2limx→−1x2+4limx→−1x−limx→−15=2 . −12+4 . −1−5=−7.

b) limx→22x+5−3x−2

Giới hạn của hàm số (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

=limx→222x+5+3

=22 . 2+5+3=13.

3. Giới hạn một phía

Cho hàm số y = f(x) xác định trên khoảng (x0; b).

• Ta nói hàm số y = f(x) có giới hạn bên phải là +∞ khi x → x0 về bên phải nếu với dãy số (xn) bất kì, x0 < xn < b và xn → x0, thì f(xn) → +∞.

Kí hiệu: limx→x0+f(x) = +∞ hay f(x) → +∞ khi x→x0+ .

• Ta nói hàm số y = f(x) có giới hạn bên phải là −∞ khi x → x0 về bên phải nếu với dãy số (xn) bất kì, x0 < xn < b và x → x0, thì f(xn) → −∞..

Kí hiệu: limx→x0+f(x) = −∞  hay f(x) → -∞  khi x→x0+ .

Chú ý:

a) Các giới hạn  limx→x0–f(x) = +∞, limx→x0– f(x) = -∞,  limx→+∞f(x) = +∞, limx→+∞f(x) = -∞, limx→−∞f(x) = +∞,limx→−∞f(x) = -∞ được định nghĩa tương tự như trên.

b) Ta có các giới hạn thường dùng sau:

• limx→a+1x−a=+∞  và limx→a−1x−a=−∞ (a∈ℝ) ;

• limx→+∞xk=+∞  với k là nguyên dương;

• limx→−∞xk=+∞  nếu k là số nguyên dương chẵn;

• limx→−∞xk=−∞  nếu k là số nguyên dương lẻ.

c) Các phép toán trên giới hạn hàm số của Mục 2 chỉ áp dụng được khi tất cả các hàm số được xét có giới hạn hữu hạn. Với giới hạn vô cực, ta có một số quy tắc sau đây.

Nếu limx→x0+f(x) = L≠0  và limx→x0+g(x) = +∞ (hoặc limx→x0+g(x) = -∞ )  thì limx→x0+[(f(x) . g(x)]  được tính theo quy tắc cho bởi bảng sau:

Giới hạn của hàm số (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Các quy tắc trên vẫn đúng khi thay x0+  thành x0−  (hoặc +∞, −∞).

Ví dụ: Tìm các giới hạn sau:

a) limx→−3+2−3xx+3 ;

b) limx→−∞(x3+2).

Hướng dẫn giải

Giới hạn của hàm số (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Video bài giảng Toán 11 Bài 16: Giới hạn của hàm số – Kết nối tri thức

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giáo án Viết văn bản nghị luận về một tác phẩm thơ (Kết nối tri thức 2023) | Giáo án Ngữ văn 11

Next post

TOP 20 bài Nghị luận về một tác phẩm thơ 2023 SIÊU HAY

Bài liên quan:

Bài giảng điện tử Giá trị lượng giác của góc lượng giác | Kết nối tri thức Giáo án PPT Toán 11

Bài giảng điện tử Toán 11 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 11

20 Bài tập Góc lượng giác. Giá trị lượng giác của góc lượng giác (sách mới) có đáp án – Toán 11

Giải sgk tất cả các môn lớp 11 Kết nối tri thức | Giải sgk các môn lớp 11 chương trình mới

Giải SBT Toán 11 Kết nối tri thức | Sách bài tập Toán 11 Kết nối tri thức (hay, chi tiết)

Giải sgk Toán 11 (cả 3 bộ sách) | Giải bài tập Toán 11 (hay, chi tiết)

Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11

Tổng hợp Lý thuyết Toán lớp 11 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 11 Kết nối tri thức hay, chi tiết

Leave a Comment Hủy

Mục lục

  1. Bài giảng điện tử Giá trị lượng giác của góc lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  2. Bài giảng điện tử Toán 11 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 11
  3. 20 Bài tập Góc lượng giác. Giá trị lượng giác của góc lượng giác (sách mới) có đáp án – Toán 11
  4. Giải sgk tất cả các môn lớp 11 Kết nối tri thức | Giải sgk các môn lớp 11 chương trình mới
  5. Giải SBT Toán 11 Kết nối tri thức | Sách bài tập Toán 11 Kết nối tri thức (hay, chi tiết)
  6. Giải sgk Toán 11 (cả 3 bộ sách) | Giải bài tập Toán 11 (hay, chi tiết)
  7. Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  8. Tổng hợp Lý thuyết Toán lớp 11 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 11 Kết nối tri thức hay, chi tiết
  9. Giáo án Toán 11 Bài 1 (Kết nối tri thức 2023): Giá trị lượng giác của góc lượng giác
  10. Giáo án Toán 11 Kết nối tri thức năm 2023 (mới nhất)
  11. Giải SGK Toán 11 Bài 1 (Kết nối tri thức): Giá trị lượng giác của góc lượng giác
  12. Giải sgk Toán 11 Kết nối tri thức | Giải bài tập Toán 11 Kết nối tri thức Tập 1, Tập 2 (hay, chi tiết)
  13. Bài giảng điện tử Công thức lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  14. 20 Bài tập Công thức lượng giác (sách mới) có đáp án – Toán 11
  15. Lý thuyết Công thức lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  16. Giáo án Toán 11 Bài 2 (Kết nối tri thức 2023): Công thức lượng giác
  17. Giải SGK Toán 11 Bài 2 (Kết nối tri thức): Công thức lượng giác
  18. Bài giảng điện tử Hàm số lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  19. 20 Bài tập Hàm số lượng giác và đồ thị (sách mới) có đáp án – Toán 11
  20. Lý thuyết Hàm số lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  21. Giáo án Toán 11 Bài 3 (Kết nối tri thức 2023): Hàm số lượng giác
  22. Giải SGK Toán 11 Bài 3 (Kết nối tri thức): Hàm số lượng giác
  23. Bài giảng điện tử Phương trình lượng giác cơ bản | Kết nối tri thức Giáo án PPT Toán 11
  24. 20 Bài tập Phương trình lượng giác cơ bản (sách mới) có đáp án – Toán 11
  25. Lý thuyết Phương trình lượng giác cơ bản (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  26. Giáo án Toán 11 Bài 4 (Kết nối tri thức 2023): Phương trình lượng giác cơ bản
  27. Giải SGK Toán 11 Bài 4 (Kết nối tri thức): Phương trình lượng giác cơ bản
  28. Bài giảng điện tử Bài tập cuối chương 1 trang 40 | Kết nối tri thức Giáo án PPT Toán 11
  29. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 1 trang 25
  30. Lý thuyết Toán 11 Chương 1 (Kết nối tri thức 2023): Hàm số lượng giác và phương trình lượng giác hay, chi tiết
  31. Giáo án Toán 11 (Kết nối tri thức 2023) Bài tập cuối chương 1
  32. Giải SGK Toán 11 (Kết nối tri thức) Bài tập cuối chương 1 trang 40
  33. Bài giảng điện tử Dãy số | Kết nối tri thức Giáo án PPT Toán 11
  34. 20 Bài tập Dãy số (sách mới) có đáp án – Toán 11
  35. Giáo án Toán 11 Bài 5 (Kết nối tri thức 2023): Dãy số
  36. Lý thuyết Dãy số (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  37. Giải SGK Toán 11 Bài 5 (Kết nối tri thức): Dãy số
  38. Bài giảng điện tử Cấp số cộng | Kết nối tri thức Giáo án PPT Toán 11
  39. 20 Bài tập Cấp số cộng (sách mới) có đáp án – Toán 11
  40. Giáo án Toán 11 Bài 6 (Kết nối tri thức 2023): Cấp số cộng
  41. Lý thuyết Cấp số cộng (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  42. Giải SGK Toán 11 Bài 6 (Kết nối tri thức): Cấp số cộng
  43. Bài giảng điện tử Cấp số nhân | Kết nối tri thức Giáo án PPT Toán 11
  44. 20 Bài tập Cấp số nhân (sách mới) có đáp án – Toán 11
  45. Giáo án Toán 11 Bài 7 (Kết nối tri thức 2023): Cấp số nhân
  46. Lý thuyết Cấp số nhân (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  47. Giải SGK Toán 11 Bài 7 (Kết nối tri thức): Cấp số nhân
  48. Bài giảng điện tử Bài tập cuối chương 2 trang 56 | Kết nối tri thức Giáo án PPT Toán 11
  49. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 2 trang 40
  50. Giáo án Toán 11 (Kết nối tri thức 2023) Bài tập cuối chương 2
  51. Lý thuyết Toán 11 Chương 2 (Kết nối tri thức 2023): Dãy số. Cấp số cộng và cấp số nhân hay, chi tiết
  52. Giải SGK Toán 11 (Kết nối tri thức) Bài tập cuối chương 2 trang 56

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán