Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 11

Giải SGK Toán 11 Bài 5 (Kết nối tri thức): Dãy số

By admin 08/10/2023 0

Giải bài tập Toán lớp 11 Bài 5: Dãy số

Mở đầu trang 42 Toán 11 Tập 1: Năm 2020, số dân của một thành phố trực thuộc tỉnh là khoảng 500 nghìn người. Người ta ước tính rằng số dân của thành phố đó sẽ tăng trưởng với tốc độ khoảng 2% mỗi năm. Khi đó số dân Pn (nghìn người) của thành phố đó sau n năm, kể từ năm 2020, được tính bằng công thức Pn = 500(1 + 0,02)n. Hỏi nếu tăng trưởng theo quy luật như vậy thì vào năm 2030, số dân của thành phố đó là khoảng bao nhiêu nghìn người?

Lời giải:

Sau bài học này ta sẽ giải quyết được bài toán trên như sau:

Ta có: n = 2030 – 2020 = 10.

Vậy số dân của thành phố đó vào năm 2030 sẽ là

P10 = 500 . (1 + 0,02)10 ≈ 609 (nghìn người).

1. Định nghĩa dãy số

HĐ1 trang 42 Toán 11 Tập 1: Viết năm số chính phương đầu theo thứ tự tăng dần. Từ đó, dự đoán công thức tính số chính phương thứ n.

Lời giải:

Năm số chính phương đầu theo thứ tự tăng dần là: 0; 1; 4; 9; 16.

Số chính phương thứ nhất là u1 = 02 = 0

Số chính phương thứ hai là u2 = 12 = 1

Số chính phương thứ ba là u3 = 22 = 4

Số chính phương thứ tư là u4 = 32 = 9

Số chính phương thứ năm là u5 = 42 = 16

Tiếp tục như trên, ta dự đoán được công thức tính số chính phương thứ n là un = (n – 1)2 với n ∈ ℕ*.

HĐ2 trang 43 Toán 11 Tập 1: a) Liệt kê tất cả các số chính phương nhỏ hơn 50 và sắp xếp chúng theo thứ tự từ bé đến lớn.

b) Viết công thức số hạng un của các số tìm được ở câu a) và nêu rõ điều kiện của n.

Lời giải:

a) Các số chính phương nhỏ hơn 50 được sắp xếp theo thứ tự từ bé đến lớn là

0; 1; 4; 9; 16; 25; 36; 49.

b) Ta có: un = (n – 1)2 với n ∈ ℕ* và n ≤ 8.

Luyện tập 1 trang 43 Toán 11 Tập 1: a) Xét dãy số gồm tất cả các số tự nhiên chia cho 5 dư 1 theo thứ tự tăng dần. Xác định số hạng tổng quát của dãy số.

b) Viết dãy số hữu hạn gồm năm số hạng đầu của dãy số trong câu a. Xác định số hạng đầu và số hạng cuối của dãy số hữu hạn này.

Lời giải:

a) Xét số tự nhiên a khác 0, ta có a chia cho 5 dư 1, khi đó tồn tại số tự nhiên q khác 0 để a = 5q + 1.

Xét dãy số gồm tất cả các số tự nhiên chia cho 5 dư 1 theo thứ tự tăng dần. Khi đó, số hạng tổng quát của dãy số là un = 5n + 1 (n ∈ ℕ*).

b) Dãy gồm năm số hạng đầu của dãy số trong câu a là: 6; 11; 16; 21; 26.

Số hạng đầu của dãy là u1 = 6, số hạng cuối của dãy là u5 = 26.

2. Các cách cho một dãy số

HĐ3 trang 43 Toán 11 Tập 1: Xét dãy số (un) gồm tất cả các số nguyên dương chia hết cho 5:

5, 10, 15, 20, 25, 30, …

a) Viết công thức số hạng tổng quát un của dãy số.

b) Xác định số hạng đầu và viết công thức tính số hạng thứ n theo số hạng thứ n – 1 của dãy số. Công thức thu được gọi là hệ thức truy hồi.

Lời giải:

a) Số hạng tổng quát của dãy số là un = 5n (n ∈ ℕ*).

b) Số hạng đầu của dãy số là u1 = 5.

Công thức tính số hạng thứ n theo số hạng thứ n – 1 là un = u­n – 1 + 5 (n ∈ ℕ*, n > 1).

Luyện tập 2 trang 44 Toán 11 Tập 1: a) Viết năm số hạng đầu của dãy số (un) với số hạng tổng quát un = n!.

b) Viết năm số hạng đầu của dãy số Fibonacci (Fn) cho bởi hệ thức truy hồi

F1=1, F2=1Fn=Fn−1+Fn−2   n≥3.

 

Lời giải:

a) Năm số hạng đầu của dãy số (un) với số hạng tổng quát un = n! là

u1 = 1! = 1;

u2 = 2! = 2;

u3 = 3! = 6;

u4 = 4! = 24;

u5 = 5! = 120.

b) Năm số hạng đầu của dãy số Fibonacci (Fn) là

F1 = 1;

F2 = 1;

F3 = F2 + F1 = 1 + 1 = 2;

F4 = F3 + F2 = 2 + 1 = 3;

F5 = F4 + F3 = 3 + 2 = 5.

3. Dãy số tăng, dãy số giảm, và dãy số bị chặn

HĐ4 trang 45 Toán 11 Tập 1: a) Xét dãy số (un) với un = 3n – 1. Tính un + 1 và so sánh với u­n.

b) Xét dãy số (vn) với vn=1n2 . Tính vn + 1 và so sánh với vn.

Lời giải:

a) Ta có: un + 1 = 3(n + 1) – 1 = 3n + 3 – 1 = 3n + 2

Xét hiệu un + 1 – un ta có: un + 1 – un = (3n + 2) – (3n – 1) = 3 > 0, tức là un + 1 > un ∀ n ∈ ℕ*.

Vậy un + 1 > un ∀ n ∈ ℕ*.

b) Ta có: vn+1=1n+12 .

Xét hiệu vn + 1 – vn ta có:

vn + 1 – vn = 1n+12−1n2

 =n2−n+12n2n+12=n2−n2+2n+1n2n+12=−2n+1n2n+12<0∀n∈ℕ* .

Tức là vn + 1 < vn , ∀ n ∈ ℕ*.

Vậy vn + 1 < vn ∀ n ∈ ℕ*.

Luyện tập 3 trang 45 Toán 11 Tập 1: Xét tính tăng, giảm của dãy số (un), với un=1n+1 .

Lời giải:

Ta có: un=1n+1 , un+1=1n+1+1=1n+2 .

un+1−un=1n+2−1n+1=n+1−n+2n+1n+2=−1n+1n+2<0∀n∈ℕ*

Tức là un + 1 < un , ∀ n ∈ ℕ*.

Vậy (un­) là dãy số giảm.

HĐ5 trang 45 Toán 11 Tập 1: Cho dãy số (un) với un=n+1n,∀n∈ℕ* .

a) So sánh un và 1.

b) So sánh un và 2.

Lời giải:

a) Ta có: un=n+1n=1+1n>1,∀n∈ℕ* .

b) Ta có: 1n≤1,∀n∈ℕ* , suy ra 1+1n≤1+1=2,∀n∈ℕ* .

Do đó, un=1+1n≤2,∀n∈ℕ* .

Luyện tập 4 trang 46 Toán 11 Tập 1: Xét tính bị chặn của dãy số (un), với un = 2n – 1.

Lời giải:

Ta có: un = 2n – 1 ≥ 1, ∀ n ∈ ℕ*.

Do đó, dãy số (un) bị chặn dưới.

Dãy số (un) không bị chặn trên vì không có số M nào thỏa mãn:

un = 2n – 1 ≤ M với mọi n ∈ ℕ*.

Vậy dãy số (un) bị chặn dưới và không bị chặn trên nên không bị chặn.

Vận dụng trang 46 Toán 11 Tập 1: Anh Thanh vừa được tuyển dụng vào một công ty công nghệ, được cam kết lương năm đầu sẽ là 200 triệu đồng và lương mỗi năm tiếp theo sẽ được tăng thêm 25 triệu đồng. Gọi sn (triệu đồng) là lương vào năm thứ n mà anh Thanh làm việc cho công ty đó. Khi đó ta có:

s1 = 200, sn = sn – 1 ­+ 25 với n ≥ 2.

a) Tính lương của anh Thanh vào năm thứ 5 làm việc cho công ty.

b) Chứng minh (sn) là dãy số tăng. Giải thích ý nghĩa thực tế của kết quả này.

Lời giải:

a) Ta có: s2 = s1 + 25 = 200 + 25 = 225

s3 = s2 + 25 = 225 + 25 = 250

s4 = s3 + 25 = 250 + 25 = 275

s5 = s4 + 25 = 275 + 25 = 300

Vậy lương của anh Thanh vào năm thứ 5 làm việc cho công ty là 300 triệu đồng.

b) Ta có: sn = sn – 1 + 25 ⇔ sn – sn – 1 = 25 > 0 với mọi n ≥ 2, n ∈ ℕ*.

Tức là sn > sn – 1 với mọi n ≥ 2, n ∈ ℕ*.

Vậy (sn) là dãy số tăng. Điều này có nghĩa là mức lương hàng năm của anh Thanh tăng dần theo thời gian làm việc.

Bài tập

Bài 2.1 trang 46 Toán 11 Tập 1: Viết năm số hạng đầu và số hạng thứ 100 của các dãy số (un) có số hạng tổng quát cho bởi:

a) un = 3n – 2;

b) un = 3 . 2n;

c) un=1+1nn .

Lời giải:

a) Ta có: u1 = 3 . 1 – 2 = 1;

u2 = 3 . 2 – 2 = 4;

u3 = 3 . 3 – 2 = 7;

u4 = 3 . 4 – 2 = 10;

u5 = 3 . 5 – 2 = 13;

u100 = 3 . 100 – 2 = 298.

b) Ta có: u1 = 3 . 21 = 6;

u2 = 3 . 22 = 12;

u3 = 3 . 23 = 24;

u4 = 3 . 24 = 48;

u5 = 3 . 25 = 96;

u100 = 3 . 2100.

c) Ta có: u1=1+111=2 ;

u2=1+122=94;

u3=1+133=6427;

u4=1+144=625256;

u5=1+155=77763125;

u100=1+1100100=101100100.

Bài 2.2 trang 46 Toán 11 Tập 1: Dãy số (un) được cho bởi hệ thức truy hồi: u1 = 1, un = n . un – 1 với n ≥ 2.

a) Viết năm số hạng đầu của dãy số.

b) Dự đoán công thức số hạng tổng quát của un.

Lời giải:

a) Năm số hạng đầu của dãy số là

u1 = 1;

u2 = 2u1 = 2 . 1 = 2;

u3 = 3u2 = 3 . 2 = 6;

u4 = 4u3 = 4 . 6 = 24;

u5 = 5u4 = 5 . 24 = 120.

b) Nhận xét thấy u1 = 1 = 1!;

u2 = 2 . 1 = 2!;

u3 = 3u2 = 3 . 2 . 1 = 3!;

u4 = 4u3 = 4 . 3 . 2 . 1 = 4!;

u5 = 5u4 = 5 . 4 . 3 . 2 . 1 = 5!;

…

Cứ tiếp tục làm như thế, ta dự đoán được công thức số hạng tổng quát của un là un = n!.

Bài 2.3 trang 46 Toán 11 Tập 1: Xét tính tăng, giảm của dãy số (un), biết:

a) un = 2n – 1;

b) un = – 3n + 2;

c) un=−1n−12n .

Lời giải:

a) Ta có: un + 1 = 2(n + 1) – 1 = 2n + 2 – 1 = 2n + 1

Xét hiệu un + 1 – un = (2n + 1) – (2n – 1) = 2 > 0, tức là un + 1 > un , ∀ n ∈ ℕ*.

Vậy (un) là dãy số tăng.

b) Ta có: un + 1 = – 3(n + 1) + 2 = – 3n – 3 + 2 = – 3n – 1

Xét hiệu un + 1 – un = (– 3n – 1) – (– 3n + 2) = – 3 < 0, tức là un + 1 < un­, ∀ n ∈ ℕ*.

Vậy (un) là dãy số giảm.

c) un=−1n−12n

Nhận xét thấy: u1=−11−121=12>0 ; u2=−12−122=−14<0 ;

u3=−13−123=18>0; u4=−14−124=−116<0 ; …

Vậy dãy số (un) không tăng, cũng không giảm.

Bài 2.4 trang 46 Toán 11 Tập 1: Trong các dãy số (un) sau, dãy số nào bị chặn dưới, bị chặn trên, bị chặn?

a) un = n – 1;

b) un=n+1n+2 ;

c) un = sin n;

d) un = (– 1)n – 1 n2.

Lời giải:

a) Ta có: un = n – 1 ≥ 0 với mọi n ∈ ℕ*.

Do đó, dãy số (un) bị chặn dưới với mọi n ∈ ℕ*.

Dãy số (un) không bị chặn trên vì không có số M nào thỏa mãn:

un = n – 1 ≤ M với mọi n ∈ ℕ*.

Vậy dãy số (un) bị chặn dưới và không bị chặn trên nên không bị chặn.

b) Ta có: un=n+1n+2=n+2−1n+2=1−1n+2 , với mọi n ∈ ℕ*.

Vì 0<1n+2≤13 , ∀ n ∈ ℕ* nên −13≤−1n+2<0 ∀ n ∈ ℕ*.

Suy ra 1−13≤1−1n+2<1 hay 23≤un<1 ∀ n ∈ ℕ*.

Vậy dãy số (un) bị chặn trên, bị chặn dưới nên dãy số (un) là dãy số bị chặn.

c) Ta có: – 1 ≤ sin n ≤ 1 với mọi n ∈ ℕ*.

Do đó, – 1 ≤ un ≤ 1 với mọi n ∈ ℕ*.

Vậy dãy số (un) bị chặn trên, bị chặn dưới nên dãy số (un) là dãy số bị chặn.

d) un = (– 1)n – 1 n2

Ta có: (– 1)n – 1 = 1 với mọi n ∈ ℕ* và n lẻ.

(– 1)n – 1 = – 1 với mọi n ∈ ℕ* và n chẵn.

n2 ≥ 0 với mọi n ∈ ℕ*.

Do đó, – 1 . n2 ≤ (– 1)n – 1 n2 ≤ 1 . n2 hay – n2 ≤ un ≤ n2 với mọi n ∈ ℕ*.

Vậy dãy số (un) bị chặn trên, bị chặn dưới nên dãy số (un) là dãy số bị chặn.

Bài 2.5 trang 46 Toán 11 Tập 1: Viết số hạng tổng quát của dãy số tăng gồm tất cả các số nguyên dương mà mỗi số hạng của nó:

a) Đều chia hết cho 3;

b) Khi chia cho 4 dư 1.

Lời giải:

a) Các số nguyên dương chia hết cho 3 là: 3; 6; 9; 12; …

Các số này có dạng 3n với n với n ∈ ℕ*.

Vậy số hạng tổng quát của dãy số tăng gồm tất cả các số nguyên dương mà mỗi số hạng của nó đều chia hết cho 3 là un = 3n với n ∈ ℕ*.

b) Các số nguyên dương chia cho 4 dư 1 có dạng là 4n + 1 với n ∈ ℕ*.

Vậy số hạng tổng quát của dãy số tăng gồm tất cả các số nguyên dương mà mỗi số hạng của nó khi chia cho 4 dưa là un = 4n + 1 với n ∈ ℕ*.

Bài 2.6 trang 46 Toán 11 Tập 1: Ông An gửi tiết kiệm 100 triệu đồng kì hạn 1 tháng với lãi suất 6% một năm theo hình thức tính lãi kép. Số tiền (triệu đồng) của ông An thu được sau n tháng được cho bởi công thức

An=1001+0,0612n.

a) Tìm số tiền ông An nhận được sau tháng thứ nhất, sau tháng thứ hai.

b) Tìm số tiền ông An nhận được sau 1 năm.

Lời giải:

a) Số tiền ông An nhận được sau tháng thứ nhất là

A1=1001+0,06121=100,5 (triệu đồng).

Số tiền ông An nhận được sau tháng thứ hai là

A2=1001+0,06122=101,0025 (triệu đồng).

b) Số tiền ông An nhận được sau 1 năm (12 tháng) là

A12=1001+0,061212≈106,17 (triệu đồng).

Bài 2.7 trang 47 Toán 11 Tập 1: Chị Hương vay trả góp một khoản tiền 100 triệu đồng và đồng ý trả dần 2 triệu đồng mỗi tháng với lãi suất 0,8% số tiền còn lại của mỗi tháng.

Gọi An (n ∈ ℕ) là số tiền còn nợ (triệu đồng) của chị Hương sau n tháng.

a) Tìm lần lượt A0, A1, A2, A3, A4, A5, A6 để tính số tiền còn nợ của chị Hương sau 6 tháng.

b) Dự đoán hệ thức truy hồi đối với dãy số (An).

Lời giải:

a) Ta có: A0 = 100 (triệu đồng)

+) Tiền lãi chị Hương phải trả sau 1 tháng là 100 . 0,8% = 0,8 (triệu đồng).

Do đó, số tiền gốc chị Hương trả được sau 1 tháng là 2 – 0,8 = 1,2 (triệu đồng).

Khi đó, số tiền còn nợ của chị Hương sau 1 tháng là

A1 = 100 – 1,2 = 98,8 (triệu đồng).

+) Tiền lãi chị Hương phải trả sau 2 tháng là 98,8 . 0,8% = 0,7904 (triệu đồng).

Do đó, số tiền gốc chị Hương trả được sau 2 tháng là 2 – 0,7904 = 1,2096 (triệu đồng).

Khi đó, số tiền còn nợ của chị Hương sau 2 tháng là

A2 = 98,8 – 1,2096 = 97,5904 (triệu đồng).

+) Tiền lãi chị Hương phải trả sau 3 tháng là 97,5904 . 0,8% = 0,7807232 (triệu đồng).

Do đó, số tiền gốc chị Hương trả được sau 3 tháng là 2 – 0,7807232 = 1,2192768 (triệu đồng).

Khi đó, số tiền còn nợ của chị Hương sau 3 tháng là

A3 = 97,5904 – 1,2192768 = 96,3711232 (triệu đồng).

+) Tiền lãi chị Hương phải trả sau 4 tháng là 96,3711232 . 0,8% ≈ 0,77097 (triệu đồng).

Do đó, số tiền gốc chị Hương trả được sau 4 tháng là 2 – 0,77097 = 1,22903 (triệu đồng).

Khi đó, số tiền còn nợ của chị Hương sau 4 tháng là

A4 = 96,3711232 – 1,22903 = 95,1420932 (triệu đồng).

+) Tiền lãi chị Hương phải trả sau 5 tháng là 95,1420932 . 0,8% ≈ 0,76114 (triệu đồng).

Do đó, số tiền gốc chị Hương trả được sau 5 tháng là 2 – 0,76114 = 1,23886 (triệu đồng).

Khi đó, số tiền còn nợ của chị Hương sau 5 tháng là

A5 = 95,1420932 – 1,23886 = 93,9032332 (triệu đồng).

+) Tiền lãi chị Hương phải trả sau 6 tháng là 93,9032332 . 0,8% ≈ 0,75123 (triệu đồng).

Do đó, số tiền gốc chị Hương trả được sau 6 tháng là 2 – 0,75123 = 1,24877 (triệu đồng).

Khi đó, số tiền còn nợ của chị Hương sau 6 tháng là

A6 = 93,9032332 – 1,24877 = 92,6544632 (triệu đồng).

b) Dự đoán hệ thức truy hồi đối với dãy số (An) là

A0 = 100; An = An – 1 – (2 – An – 1. 0,8%) = 1,008An – 1 – 2.

Video bài giảng Toán 11 Bài 5: Dãy số – Kết nối tri thức

Xem thêm các bài giải SGK Toán lớp 11 Kết nối tri thức hay, chi tiết khác:

Bài tập cuối chương 1

Bài 5: Dãy số

Bài 6: Cấp số cộng

Bài 7: Cấp số nhân

Bài tập cuối chương 2

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giáo án Vợ nhặt (Kết nối tri thức 2023) | Giáo án Ngữ văn 11

Next post

Bài giảng điện tử Cấp số cộng | Kết nối tri thức Giáo án PPT Toán 11

Bài liên quan:

Bài giảng điện tử Giá trị lượng giác của góc lượng giác | Kết nối tri thức Giáo án PPT Toán 11

Bài giảng điện tử Toán 11 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 11

20 Bài tập Góc lượng giác. Giá trị lượng giác của góc lượng giác (sách mới) có đáp án – Toán 11

Giải sgk tất cả các môn lớp 11 Kết nối tri thức | Giải sgk các môn lớp 11 chương trình mới

Giải SBT Toán 11 Kết nối tri thức | Sách bài tập Toán 11 Kết nối tri thức (hay, chi tiết)

Giải sgk Toán 11 (cả 3 bộ sách) | Giải bài tập Toán 11 (hay, chi tiết)

Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11

Tổng hợp Lý thuyết Toán lớp 11 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 11 Kết nối tri thức hay, chi tiết

Leave a Comment Hủy

Mục lục

  1. Bài giảng điện tử Giá trị lượng giác của góc lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  2. Bài giảng điện tử Toán 11 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 11
  3. 20 Bài tập Góc lượng giác. Giá trị lượng giác của góc lượng giác (sách mới) có đáp án – Toán 11
  4. Giải sgk tất cả các môn lớp 11 Kết nối tri thức | Giải sgk các môn lớp 11 chương trình mới
  5. Giải SBT Toán 11 Kết nối tri thức | Sách bài tập Toán 11 Kết nối tri thức (hay, chi tiết)
  6. Giải sgk Toán 11 (cả 3 bộ sách) | Giải bài tập Toán 11 (hay, chi tiết)
  7. Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  8. Tổng hợp Lý thuyết Toán lớp 11 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 11 Kết nối tri thức hay, chi tiết
  9. Giáo án Toán 11 Bài 1 (Kết nối tri thức 2023): Giá trị lượng giác của góc lượng giác
  10. Giáo án Toán 11 Kết nối tri thức năm 2023 (mới nhất)
  11. Giải SGK Toán 11 Bài 1 (Kết nối tri thức): Giá trị lượng giác của góc lượng giác
  12. Giải sgk Toán 11 Kết nối tri thức | Giải bài tập Toán 11 Kết nối tri thức Tập 1, Tập 2 (hay, chi tiết)
  13. Bài giảng điện tử Công thức lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  14. 20 Bài tập Công thức lượng giác (sách mới) có đáp án – Toán 11
  15. Lý thuyết Công thức lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  16. Giáo án Toán 11 Bài 2 (Kết nối tri thức 2023): Công thức lượng giác
  17. Giải SGK Toán 11 Bài 2 (Kết nối tri thức): Công thức lượng giác
  18. Bài giảng điện tử Hàm số lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  19. 20 Bài tập Hàm số lượng giác và đồ thị (sách mới) có đáp án – Toán 11
  20. Lý thuyết Hàm số lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  21. Giáo án Toán 11 Bài 3 (Kết nối tri thức 2023): Hàm số lượng giác
  22. Giải SGK Toán 11 Bài 3 (Kết nối tri thức): Hàm số lượng giác
  23. Bài giảng điện tử Phương trình lượng giác cơ bản | Kết nối tri thức Giáo án PPT Toán 11
  24. 20 Bài tập Phương trình lượng giác cơ bản (sách mới) có đáp án – Toán 11
  25. Lý thuyết Phương trình lượng giác cơ bản (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  26. Giáo án Toán 11 Bài 4 (Kết nối tri thức 2023): Phương trình lượng giác cơ bản
  27. Giải SGK Toán 11 Bài 4 (Kết nối tri thức): Phương trình lượng giác cơ bản
  28. Bài giảng điện tử Bài tập cuối chương 1 trang 40 | Kết nối tri thức Giáo án PPT Toán 11
  29. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 1 trang 25
  30. Lý thuyết Toán 11 Chương 1 (Kết nối tri thức 2023): Hàm số lượng giác và phương trình lượng giác hay, chi tiết
  31. Giáo án Toán 11 (Kết nối tri thức 2023) Bài tập cuối chương 1
  32. Giải SGK Toán 11 (Kết nối tri thức) Bài tập cuối chương 1 trang 40
  33. Bài giảng điện tử Dãy số | Kết nối tri thức Giáo án PPT Toán 11
  34. 20 Bài tập Dãy số (sách mới) có đáp án – Toán 11
  35. Giáo án Toán 11 Bài 5 (Kết nối tri thức 2023): Dãy số
  36. Lý thuyết Dãy số (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  37. Bài giảng điện tử Cấp số cộng | Kết nối tri thức Giáo án PPT Toán 11
  38. 20 Bài tập Cấp số cộng (sách mới) có đáp án – Toán 11
  39. Giáo án Toán 11 Bài 6 (Kết nối tri thức 2023): Cấp số cộng
  40. Lý thuyết Cấp số cộng (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  41. Giải SGK Toán 11 Bài 6 (Kết nối tri thức): Cấp số cộng
  42. Bài giảng điện tử Cấp số nhân | Kết nối tri thức Giáo án PPT Toán 11
  43. 20 Bài tập Cấp số nhân (sách mới) có đáp án – Toán 11
  44. Giáo án Toán 11 Bài 7 (Kết nối tri thức 2023): Cấp số nhân
  45. Lý thuyết Cấp số nhân (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  46. Giải SGK Toán 11 Bài 7 (Kết nối tri thức): Cấp số nhân
  47. Bài giảng điện tử Bài tập cuối chương 2 trang 56 | Kết nối tri thức Giáo án PPT Toán 11
  48. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 2 trang 40
  49. Giáo án Toán 11 (Kết nối tri thức 2023) Bài tập cuối chương 2
  50. Lý thuyết Toán 11 Chương 2 (Kết nối tri thức 2023): Dãy số. Cấp số cộng và cấp số nhân hay, chi tiết
  51. Giải SGK Toán 11 (Kết nối tri thức) Bài tập cuối chương 2 trang 56
  52. Giáo án Toán 11 Bài 8 (Kết nối tri thức 2023): Mẫu số liệu ghép nhóm

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán