Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 11

20 Bài tập Công thức lượng giác (sách mới) có đáp án – Toán 11

By admin 08/10/2023 0

Bài tập Toán 11 Công thức lượng giác

A. Bài tập Công thức lượng giác

Bài 1. Tính sin2a và tan2a biết cos a = 14 và 3π2<a<2π.

Hướng dẫn giải

Vì 3π2<a<2πnên sina < 0.

Ta có:

sin2a + cos2a = 1 ⇒ sin2a = 1 – cos2a = 1 – Lý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác = 1516

⇒ sina = −154.

Ta có: sin2a = 2sina cosa = 2.Lý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác.14 = –158

Ta có: tana = sinacosa=−15

⇒tan2a=2tana1−tan2a=Lý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác==−215−14=157.

Bài 2. Tính

a) sinLý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác biết sin a = 34 và 0 < a < π2;

b) cos3π8.cosπ8 + sin3π8.sinπ8.

Hướng dẫn giải

a) Vì 0<a<π2 nên cosa > 0.

Ta có: sin2a + cos2a = 1 ⇒ cos2a = 1 – sin2a = 1-Lý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác=716

⇒ cosa = null.

Vậy sinLý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác=sinacosπ3−cosasinπ3=34.12−74.32=3−218 .

Lý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác

Suy ra: cos3π8.cosπ8+sin3π8.sinπ8=24+24=22.

Bài 3. Tính

a) cos(–15°) + cos255°;

b) sin13π24sin5π24.

Hướng dẫn giải

a) Ta có:

cos(-15o) + cos255o = 2.cos−15°+255°2.cos−15°−255°2

= 2.cos120o.cos(135o) = 2Lý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác

Vậy cos(–15°) + cos255° = 22.

b) Ta có:

Lý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác

Vậy sin13π24sin5π24=1+24.

Bài 4. Rút gọn biểu thức sau:

Lý thuyết Toán 11 Chân trời sáng tạo Bài 3: Các công thức lượng giác

Hướng dẫn giải

Lý thuyết Toán 11 Chân trời sáng tạo Bài 3: Các công thức lượng giác

⇔ P=−2sinx

Vậy P = −2sin x.

Bài 5. Chứng minh rằng: cosα−sinα=2cos(α+π4).

Hướng dẫn giải

Ta có:

Lý thuyết Toán 11 Chân trời sáng tạo Bài 3: Các công thức lượng giác

Bài 6. Cho sinα=13 và π2<α<π. Tính các giá trị lượng giác của góc 2α.

Hướng dẫn giải

Do π2<α<π ⇒ cos α < 0.

Ta có: cos2α=1−sin2α=89

⇒ cosα=−223 (do cos α < 0).

Lý thuyết Toán 11 Chân trời sáng tạo Bài 3: Các công thức lượng giác

tan2α=sin2αcos2α=−429.97=−427.

cot2α=1tan2α=−728.

Bài 7. Tính α + β biết tanα=25,  tanβ=37.

Hướng dẫn giải

Áp dụng công thức cộng đối với tang, ta được: Lý thuyết Toán 11 Cánh diều Bài 2: Các phép biến đổi lượng giác

Vậy α+β=π4.

Bài 8. Cho cos2a=−45, với π4<a<π2. Tính sina, cosa, Lý thuyết Toán 11 Cánh diều Bài 2: Các phép biến đổi lượng giác, sin2a, Lý thuyết Toán 11 Cánh diều Bài 2: Các phép biến đổi lượng giác.

Hướng dẫn giải

Vì π4<a<π2 nên sina > 0, cosa > 0.

• Áp dụng công thức hạ bậc, ta được: sin2a=1−cos2a2=1+452=910

Suy ra sina=310 (do sina > 0)

• Áp dụng công thức hạ bậc, ta được: cos2a=1+cos2a2=1−452=110.

Suy ra cosa=110.

• Áp dụng công thức cộng đối với sin, ta được:

Lý thuyết Toán 11 Cánh diều Bài 2: Các phép biến đổi lượng giác

=310.12+110.32=30+31020.

• Áp dụng công thức nhân đôi, ta được:

sin2a=2sinacosa=2.310.110=35.

• Áp dụng công thức cộng đối với côsin, ta được:

Lý thuyết Toán 11 Cánh diều Bài 2: Các phép biến đổi lượng giác

Bài 9. Chứng minh rằng:

a) cos3x.sinx−sin3x.cosx=14sin4x;

Lý thuyết Toán 11 Cánh diều Bài 2: Các phép biến đổi lượng giác

Hướng dẫn giải

a) VT = cos3x.sinx – sin3x.cosx

= cosx.sinx.(cos2x – sin2x)

=12sin2x.cos2x

=14sin4x = VP.

Vậy ta có điều phải chứng minh.

Lý thuyết Toán 11 Cánh diều Bài 2: Các phép biến đổi lượng giác

Bài 10. Cho ∆ABC. Chứng minh rằng:

a) sinA+sinB+sinC=4cosA2cosB2cosC2;

b) sinA+sinBcosA+cosB=cotC2;

c) sin2A+sin2B+sin2C=2SR2, với R là bán kính đường tròn ngoại tiếp ∆ABC và S là diện tích ∆ABC.

Hướng dẫn giải

∆ABC, có: A^+B^+C^=180°, suy ra A^+B^=180°−C^

Do đó A^+B^2=90°−C^2.

Lý thuyết Toán 11 Cánh diều Bài 2: Các phép biến đổi lượng giác

b) VT=sinA+sinBcosA+cosB=2sinA+B2cosA−B22cosA+B2cosA−B2

Lý thuyết Toán 11 Cánh diều Bài 2: Các phép biến đổi lượng giác

Vậy ta có điều phải chứng minh.

c) VT = sin2A + sin2B + sin2C

= 2sin(A + B).cos(A – B) + 2sinC.cosC

= 2sin(180° – C).cos(A – B) + 2sinC.cosC

= 2sinC.cos(A – B) + 2sinC.cosC

= 2sinC.[cos(A – B) + cosC]

= 2sinC.[cos(A – B) + cos(180° – A – B)]

= 2sinC.[cos(A – B) – cos(A + B)]

= –4sinC.sinA.sin(–B)

= 4sinA.sinB.sinC

=4.a2R.b2R.c2R=abc4R.2R2=2SR2=VP.

Vậy ta có điều phải chứng minh.

B. Lý thuyết Công thức lượng giác

1. Công thức cộng

cos (a – b) = cosa cosb + sina sinb

cos (a + b) = cosa cosb – sina sinb

sin (a – b) = sina cosb – cosa sinb

sin (a + b) = sina cosb + cosa sinb

tan (a-b) = tana−tanb1+tanatanb

tan (a+b) = tana+tanb1–tanatanb

(giả thiết các biểu thức đều có nghĩa).

Ví dụ: Không dùng máy tính, hãy tính sinCông thức lượng giác (Lý thuyết Toán lớp 11) | Kết nối tri thức và tan 15°.

Hướng dẫn giải

Ta có

sin Công thức lượng giác (Lý thuyết Toán lớp 11) | Kết nối tri thức = -sin7π6 = -sinCông thức lượng giác (Lý thuyết Toán lớp 11) | Kết nối tri thức

= -sinπcosπ6 – cosπsinπ6 = -0.32 – (-1).12 = 12.

Ta có

tan15o = tan(60o – 45o) = tan60°−tan45°1+tan60°.tan45°

=3−11+3.1=3−13+1=2−3

2. Công thức nhân đôi

sin2a = 2sina cosa

cos2a = cos2a – sin2a = 2cos2 – 1 = 1 – 2sin2a

tan2a = 2tana1−tan2a.

Chú ý: Từ công thức nhân đôi suy ra công thức hạ bậc:

cos2a=1+cos2a2

sin2a=1−cos2a2.

Ví dụ: Biết sinα = 25 và 0 < α < π2 . Tính sin2α ; cos2α và tan2α.

Hướng dẫn giải

Vì 0 < α < π2 nên cosα > 0.

Ta có:

sin2α + cos2α = 1 ⇒ cos2α = 1 – sin2α = 1-Công thức lượng giác (Lý thuyết Toán lớp 11) | Kết nối tri thức= 2125

⇒ cosα = 215.

Ta có: sin2α = 2sinα cosα = 2.25.215=42125

cos2α = 1 – 2sin2α = 1 – 2.Công thức lượng giác (Lý thuyết Toán lớp 11) | Kết nối tri thức= 1725

tanα=sinαcosα=22121

⇒ tan2α=2tanα1−tan2α=Công thức lượng giác (Lý thuyết Toán lớp 11) | Kết nối tri thức=42117.

3. Công thức biến đổi tích thành tổng

cosacosb = 12[cos(a-b) + cos(a+b)]

sinasinb = 12[cos(a-b) – cos(a+b)]

sinacosb = 12[sin(a-b) + sin(a+b)].

Ví dụ: Tính giá trị của biểu thức

a) A = sin7π12cos5π12;

b) B = sinπ12sin7π12.

Hướng dẫn giải

a) Ta có:

Công thức lượng giác (Lý thuyết Toán lớp 11) | Kết nối tri thức

Vậy A = 14.

b) Ta có:

Công thức lượng giác (Lý thuyết Toán lớp 11) | Kết nối tri thức

Vậy B = 14 .

4. Công thức biến đổi tổng thành tích

cosu + cosv = 2cosu+v2cosu–v2

cosu – cosv = -2sinu+v2sinu–v2

sinu + sinv = 2sinu+v2cosu–v2

sinu – sinv = 2cosu+v2sinu–v2.

Ví dụ: ChoA = cosπ17.cos4π17 và B = cos3π17 + cos5π17. Không dùng máy tính, tính giá trị của biểu thức AB.

Hướng dẫn giải

Ta có:

B = cos3π17 + cos5π17 = 2.cos3π17+5π172.cos3π17−5π172

= 2.cos4π17.cosCông thức lượng giác (Lý thuyết Toán lớp 11) | Kết nối tri thức = 2cos4π17.cosπ17.

Suy ra AB=cosπ17.cos4π17cos3π17+cos5π17=cosπ17.cos4π172cos4π17.cosπ17=12 .

Video bài giảng Toán 11 Bài 2: Công thức lượng giác – Kết nối tri thức

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Tác giả tác phẩm Ngữ văn 11 Kết nối tri thức (hay, chi tiết)

Next post

Lý thuyết Công thức lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11

Bài liên quan:

Bài giảng điện tử Giá trị lượng giác của góc lượng giác | Kết nối tri thức Giáo án PPT Toán 11

Bài giảng điện tử Toán 11 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 11

20 Bài tập Góc lượng giác. Giá trị lượng giác của góc lượng giác (sách mới) có đáp án – Toán 11

Giải sgk tất cả các môn lớp 11 Kết nối tri thức | Giải sgk các môn lớp 11 chương trình mới

Giải SBT Toán 11 Kết nối tri thức | Sách bài tập Toán 11 Kết nối tri thức (hay, chi tiết)

Giải sgk Toán 11 (cả 3 bộ sách) | Giải bài tập Toán 11 (hay, chi tiết)

Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11

Tổng hợp Lý thuyết Toán lớp 11 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 11 Kết nối tri thức hay, chi tiết

Leave a Comment Hủy

Mục lục

  1. Bài giảng điện tử Giá trị lượng giác của góc lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  2. Bài giảng điện tử Toán 11 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 11
  3. 20 Bài tập Góc lượng giác. Giá trị lượng giác của góc lượng giác (sách mới) có đáp án – Toán 11
  4. Giải sgk tất cả các môn lớp 11 Kết nối tri thức | Giải sgk các môn lớp 11 chương trình mới
  5. Giải SBT Toán 11 Kết nối tri thức | Sách bài tập Toán 11 Kết nối tri thức (hay, chi tiết)
  6. Giải sgk Toán 11 (cả 3 bộ sách) | Giải bài tập Toán 11 (hay, chi tiết)
  7. Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  8. Tổng hợp Lý thuyết Toán lớp 11 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 11 Kết nối tri thức hay, chi tiết
  9. Giáo án Toán 11 Bài 1 (Kết nối tri thức 2023): Giá trị lượng giác của góc lượng giác
  10. Giáo án Toán 11 Kết nối tri thức năm 2023 (mới nhất)
  11. Giải SGK Toán 11 Bài 1 (Kết nối tri thức): Giá trị lượng giác của góc lượng giác
  12. Giải sgk Toán 11 Kết nối tri thức | Giải bài tập Toán 11 Kết nối tri thức Tập 1, Tập 2 (hay, chi tiết)
  13. Bài giảng điện tử Công thức lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  14. Lý thuyết Công thức lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  15. Giáo án Toán 11 Bài 2 (Kết nối tri thức 2023): Công thức lượng giác
  16. Giải SGK Toán 11 Bài 2 (Kết nối tri thức): Công thức lượng giác
  17. Bài giảng điện tử Hàm số lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  18. 20 Bài tập Hàm số lượng giác và đồ thị (sách mới) có đáp án – Toán 11
  19. Lý thuyết Hàm số lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  20. Giáo án Toán 11 Bài 3 (Kết nối tri thức 2023): Hàm số lượng giác
  21. Giải SGK Toán 11 Bài 3 (Kết nối tri thức): Hàm số lượng giác
  22. Bài giảng điện tử Phương trình lượng giác cơ bản | Kết nối tri thức Giáo án PPT Toán 11
  23. 20 Bài tập Phương trình lượng giác cơ bản (sách mới) có đáp án – Toán 11
  24. Lý thuyết Phương trình lượng giác cơ bản (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  25. Giáo án Toán 11 Bài 4 (Kết nối tri thức 2023): Phương trình lượng giác cơ bản
  26. Giải SGK Toán 11 Bài 4 (Kết nối tri thức): Phương trình lượng giác cơ bản
  27. Bài giảng điện tử Bài tập cuối chương 1 trang 40 | Kết nối tri thức Giáo án PPT Toán 11
  28. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 1 trang 25
  29. Lý thuyết Toán 11 Chương 1 (Kết nối tri thức 2023): Hàm số lượng giác và phương trình lượng giác hay, chi tiết
  30. Giáo án Toán 11 (Kết nối tri thức 2023) Bài tập cuối chương 1
  31. Giải SGK Toán 11 (Kết nối tri thức) Bài tập cuối chương 1 trang 40
  32. Bài giảng điện tử Dãy số | Kết nối tri thức Giáo án PPT Toán 11
  33. 20 Bài tập Dãy số (sách mới) có đáp án – Toán 11
  34. Giáo án Toán 11 Bài 5 (Kết nối tri thức 2023): Dãy số
  35. Lý thuyết Dãy số (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  36. Giải SGK Toán 11 Bài 5 (Kết nối tri thức): Dãy số
  37. Bài giảng điện tử Cấp số cộng | Kết nối tri thức Giáo án PPT Toán 11
  38. 20 Bài tập Cấp số cộng (sách mới) có đáp án – Toán 11
  39. Giáo án Toán 11 Bài 6 (Kết nối tri thức 2023): Cấp số cộng
  40. Lý thuyết Cấp số cộng (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  41. Giải SGK Toán 11 Bài 6 (Kết nối tri thức): Cấp số cộng
  42. Bài giảng điện tử Cấp số nhân | Kết nối tri thức Giáo án PPT Toán 11
  43. 20 Bài tập Cấp số nhân (sách mới) có đáp án – Toán 11
  44. Giáo án Toán 11 Bài 7 (Kết nối tri thức 2023): Cấp số nhân
  45. Lý thuyết Cấp số nhân (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  46. Giải SGK Toán 11 Bài 7 (Kết nối tri thức): Cấp số nhân
  47. Bài giảng điện tử Bài tập cuối chương 2 trang 56 | Kết nối tri thức Giáo án PPT Toán 11
  48. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 2 trang 40
  49. Giáo án Toán 11 (Kết nối tri thức 2023) Bài tập cuối chương 2
  50. Lý thuyết Toán 11 Chương 2 (Kết nối tri thức 2023): Dãy số. Cấp số cộng và cấp số nhân hay, chi tiết
  51. Giải SGK Toán 11 (Kết nối tri thức) Bài tập cuối chương 2 trang 56
  52. Giáo án Toán 11 Bài 8 (Kết nối tri thức 2023): Mẫu số liệu ghép nhóm

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán