Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 11

20 Bài tập Cấp số cộng (sách mới) có đáp án – Toán 11

By admin 08/10/2023 0

Bài tập Toán 11 Cấp số cộng

A. Bài tập Cấp số cộng

Bài 1: Xác định công sai, số hạng thứ 5, số hạng tổng quát và số hạng thứ 100 của mỗi cấp số cộng sau:

a) 3, 8, 13, 18, …;

b) 1, –2, –5, –8, …

Hướng dẫn giải

a) Ta thấy: 8 – 3 = 5; 13 – 8 = 5

Suy ra cấp số cộng có u1 = 3, công sai d = 5

Số hạng tổng quát của dãy số là: un = 3 + 5(n – 1) = 3 + 5n – 5 = 5n – 2.

Số hạng thứ 5: u5 = 3 + 5 . (5 – 1) = 23

Số hạng thứ 100: u100 = 3 + 5 . (100 – 1) = 498.

b) Ta thấy: –2 – 1= –3; –5 – (–2) = –3

Suy ra cấp số cộng có u1 = 1, công sai d = –3

Số hạng tổng quát của dãy số là: un = 1 – 3(n − 1) = 1 – 3n + 3 = 4 – 3n.

Số hạng thứ 5: u5 = 1 − 3. (5 – 1) = −11

Số hạng thứ 100: u100 = 1 – 3. (100 – 1) = −296.

Bài 2: Viết năm số hạng đầu của mỗi dãy số (un) sau và xét xem nó có phải là cấp số cộng không. Nếu dãy số đó là cấp số cộng, hãy tìm công sai d và viết số hạng tổng quát của nó dưới dạng un = u1 + (n – 1)d.

a) un = 3 + 4n;

b) un = 6n − 4;

c) u1 = 3, un = un–1 + n.

Hướng dẫn giải

a) u1 = 7; u2 = 11; u3 = 15; u4 = 19; u5 = 23

Ta có: un − un–1 = 3 + 4n − [3 + 4(n − 1)] = 4, với ∀n ≥ 2.

Suy ra dãy số là cấp số cộng có u1 = 7 và công sai d = 4

Số hạng tổng quát: un = 7 + 4(n − 1).

b) u1 = 2; u2 = 8; u3 = 14; u4 = 20; u5 = 26

Ta có: un − un–1 = 6n − 4 − [6(n − 1) − 4] = 6, với ∀ n ≥ 2.

Suy ra dãy số là cấp số cộng có u1 = 2 và công sai d = 6.

Số hạng tổng quát: un = 2 + 6(n − 1).

c) u1 = 3; u2 = 5; u3 = 8; u4 = 12; u5 =17

Ta có: u2 − u1 = 2 ≠ u3 – u2 = 3

Suy ra đây không phải cấp số cộng.

Bài 3: Một cấp số cộng có số hạng thứ 5 bằng 22 và số hạng thứ 12 bằng 43. Tìm số hạng thứ 50 của cấp số cộng này.

Hướng dẫn giải

Giả sử u1 là số hạng đầu và d là công sai của cấp số cộng đó. Ta có:

u5 = u1 + 4d = 22

u12 = u1 + 11d = 43

Giải hệ phương trình gồm hai phương trình trên ta được u1 = 10 và d = 3.

Vậy số hạng thứ 50 của cấp số cộng này là u50 = u1­ + 49d = 10 + 49 . 3 = 157.

Bài 4: Một cấp số cộng có số hạng đầu bằng 1 và công sai bằng 4. Hỏi phải lấy tổng của bao nhiêu số hạng đầu của cấp số cộng này để có tổng bằng 561?

Hướng dẫn giải

Gọi n là số các số hạng đầu cần lấy tổng, ta có:

561 = Sn =n2[2.1+(n-1).4] = n2(-2+4n) = –n + 2n2

Do đó 2n2 – n – 561 = 0.

Giải phương trình bậc hai này ta được n = –16,5 (loại) hoặc n = 17.

Vậy ta phải lấy 17 số hạng đầu của cấp số cộng đã cho để có tổng bằng 561.

Bài 5: Vào năm 2020, dân số của một thành phố là khoảng 1,5 triệu người. Giả sử mỗi năm, dân số của thành phố này tăng thêm khoảng 15 nghìn người. Hãy ước tính dân số của thành phố vào năm 2030.

Hướng dẫn giải

Dân số mỗi năm của thành phố lập thành cấp số cộng có u1 = 1 500 (nghìn người), công sai d = 15.

Dân số mỗi năm có dạng tổng quát là: un = 1 500 + 15(n − 1).

Dân số của năm 2030 tức n = 11 thì u11 = 1 500 + 15 . (11 − 1) = 1 650 (nghìn người)

Vậy ước tính dân số của thành phố năm 2030 là 1650 nghìn người hay 1,65 triệu người.

Bài 6. Cho cấp số cộng (un) có u1 = 321 và un + 1 = un – 3, ∀n ∈ ℕ*. Số 99 là số hạng thứ bao nhiêu trong dãy số?

A. 72;

B. 73;

C. 74;

D. 75.

Hướng dẫn giải

Đáp án đúng là: D

Ta có: un + 1 = un – 3 ⇒ un + 1 − un = −3 ⇒ d = −3.

un = u1 + (n – 1)d = 321 + (n – 1)(−3) = −3n + 324.

Ta có: un = 99 ⇒ −3n + 324 = 99

⇒ −3n = −225 ⇒ n = 75.

Vậy 99 là số hạng thứ 75 trong dãy số.

Bài 7. Cho cấp số cộng (un) có u2 = 2017 và u3 = 1945. Số hạng thứ 6 của cấp số cộng đã cho bằng bao nhiêu?

Hướng dẫn giải

Ta có u3 – u2 = 1945 – 2017 = –72 ⇒ d = −72.

⇒ u1 = u2 − d = 2017 + 72 = 2089.

u6 = u1 + 5d = 2089 + 5.(−72) = 1729.

Vậy số hạng thứ 6 của cấp số cộng đã cho là 1729.

Bài 8. Cho cấp số cộng (un) có u1=13,  u8=26 . Tìm d và xác định công thức số hạng tổng quát của cấp số cộng đã cho.

Hướng dẫn giải

Ta có <u8=u1+7d ⇔26=13+7d 

⇔7d=773⇔d=113.

Vậy công thức số hạng tổng quát của cấp số cộng (un) là un=u1+113(n–1)

Bài 9. Cho dãy số (un) với un = 5 – 3n.

a) Chứng minh dãy số (un) là cấp số cộng. Chỉ rõ u1 và d.

b) Tìm tổng của 100 số hạng đầu tiên của dãy.

Hướng dẫn giải

a) Xét hiệu un + 1 – un = [5 – 3(n + 1)] – (5 – 3n) = –3.

Do đó un + 1 = un + (–3)

Suy ra dãy số (un) là cấp số cộng; u1 = 5 – 3.1 = 2; công sai d = –3.

b) Tổng của 100 số hạng đầu tiên của dãy là:

Lý thuyết Toán 11 Cánh diều Bài 2: Cấp số cộng.

Bài 10. Cho cấp số cộng có u1 = 3; công sai d = 4.

a) Viết công thức của số hạng tổng quát un.

b) Số 155 là số hạng thứ mấy của cấp số cộng trên?

c) Tính tổng 200 số hạng đầu của dãy.

Hướng dẫn giải

a) Ta có công thức của số hạng tổng quát un là:

un = u1 + (n – 1).d = 3 + (n – 1).4 = 4n – 1.

Vậy un = 4n – 1.

b) Giả sử 155 là số hạng thứ n của cấp số cộng. Ta có:

n=un−u1d+1=155−34+1=39.

Vậy 155 là số hạng thứ 39 của cấp số cộng.

c) Tổng 200 số hạng đầu của dãy là:

Lý thuyết Toán 11 Cánh diều Bài 2: Cấp số cộng.

Vậy tổng 200 số hạng đầu của dãy là S200 = 80200.

B. Lý thuyết Cấp số cộng

1. Cấp số cộng

– Cấp số cộng là một dãy số (vô hạn hoặc hữu hạn) mà trong đó, kể từ số hạng thứ hai, mỗi số hạng đều bằng tổng của số hạng đứng ngay trước nó với một số d không đổi, nghĩa là:

un + 1 = un + d với n ∈ ℕ*.

Số d được gọi là công sai của cấp số cộng.

Ví dụ: Cho cấp số cộng: −12;  0;  12;  32;  … Tìm số hạng đầu, công sai và u5.

Hướng dẫn giải

Cấp số cộng đã cho có số hạng đầu u1=−12; công sai d=12.

Ta có u4=32 nên u5=u4+d=32+12=2.

2. Số hạng tổng quát của cấp số cộng

Định lí 1: Nếu một cấp số cộng (un) có số hạng đầu u1 và công sai d thì số hạng tổng quát un của nó được xác định bởi công thức:

un = u1 + (n – 1)d, n ≥ 2.

Ví dụ: Cho một cấp số cộng có u1 = −3; u6 = 27.

Hướng dẫn giải

Ta có: u6 = u1 + (6 – 1)d = 27

⇔ −3 + 5d = 27 ⇔ 5d = 30 ⇔ d = 6.

3. Tổng của n số hạng đầu tiên của cấp số cộng

Định lí 2: Giả sử (un) là một cấp số cộng có công sai d. Đặt Sn = u1 + u2 + … + un, khi đó

Cấp số cộng (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Ví dụ: Cho cấp số cộng (un) có u1 = −3; d = 2.

Cấp số cộng (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Vậy tổng của 5 số hạng đầu tiên của dãy số (un) là 5.

Video bài giảng Toán 11 Bài 6: Cấp số cộng – Kết nối tri thức

 

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Bài giảng điện tử Cấp số cộng | Kết nối tri thức Giáo án PPT Toán 11

Next post

Giáo án Toán 11 Bài 6 (Kết nối tri thức 2023): Cấp số cộng

Bài liên quan:

Bài giảng điện tử Giá trị lượng giác của góc lượng giác | Kết nối tri thức Giáo án PPT Toán 11

Bài giảng điện tử Toán 11 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 11

20 Bài tập Góc lượng giác. Giá trị lượng giác của góc lượng giác (sách mới) có đáp án – Toán 11

Giải sgk tất cả các môn lớp 11 Kết nối tri thức | Giải sgk các môn lớp 11 chương trình mới

Giải SBT Toán 11 Kết nối tri thức | Sách bài tập Toán 11 Kết nối tri thức (hay, chi tiết)

Giải sgk Toán 11 (cả 3 bộ sách) | Giải bài tập Toán 11 (hay, chi tiết)

Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11

Tổng hợp Lý thuyết Toán lớp 11 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 11 Kết nối tri thức hay, chi tiết

Leave a Comment Hủy

Mục lục

  1. Bài giảng điện tử Giá trị lượng giác của góc lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  2. Bài giảng điện tử Toán 11 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 11
  3. 20 Bài tập Góc lượng giác. Giá trị lượng giác của góc lượng giác (sách mới) có đáp án – Toán 11
  4. Giải sgk tất cả các môn lớp 11 Kết nối tri thức | Giải sgk các môn lớp 11 chương trình mới
  5. Giải SBT Toán 11 Kết nối tri thức | Sách bài tập Toán 11 Kết nối tri thức (hay, chi tiết)
  6. Giải sgk Toán 11 (cả 3 bộ sách) | Giải bài tập Toán 11 (hay, chi tiết)
  7. Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  8. Tổng hợp Lý thuyết Toán lớp 11 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 11 Kết nối tri thức hay, chi tiết
  9. Giáo án Toán 11 Bài 1 (Kết nối tri thức 2023): Giá trị lượng giác của góc lượng giác
  10. Giáo án Toán 11 Kết nối tri thức năm 2023 (mới nhất)
  11. Giải SGK Toán 11 Bài 1 (Kết nối tri thức): Giá trị lượng giác của góc lượng giác
  12. Giải sgk Toán 11 Kết nối tri thức | Giải bài tập Toán 11 Kết nối tri thức Tập 1, Tập 2 (hay, chi tiết)
  13. Bài giảng điện tử Công thức lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  14. 20 Bài tập Công thức lượng giác (sách mới) có đáp án – Toán 11
  15. Lý thuyết Công thức lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  16. Giáo án Toán 11 Bài 2 (Kết nối tri thức 2023): Công thức lượng giác
  17. Giải SGK Toán 11 Bài 2 (Kết nối tri thức): Công thức lượng giác
  18. Bài giảng điện tử Hàm số lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  19. 20 Bài tập Hàm số lượng giác và đồ thị (sách mới) có đáp án – Toán 11
  20. Lý thuyết Hàm số lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  21. Giáo án Toán 11 Bài 3 (Kết nối tri thức 2023): Hàm số lượng giác
  22. Giải SGK Toán 11 Bài 3 (Kết nối tri thức): Hàm số lượng giác
  23. Bài giảng điện tử Phương trình lượng giác cơ bản | Kết nối tri thức Giáo án PPT Toán 11
  24. 20 Bài tập Phương trình lượng giác cơ bản (sách mới) có đáp án – Toán 11
  25. Lý thuyết Phương trình lượng giác cơ bản (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  26. Giáo án Toán 11 Bài 4 (Kết nối tri thức 2023): Phương trình lượng giác cơ bản
  27. Giải SGK Toán 11 Bài 4 (Kết nối tri thức): Phương trình lượng giác cơ bản
  28. Bài giảng điện tử Bài tập cuối chương 1 trang 40 | Kết nối tri thức Giáo án PPT Toán 11
  29. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 1 trang 25
  30. Lý thuyết Toán 11 Chương 1 (Kết nối tri thức 2023): Hàm số lượng giác và phương trình lượng giác hay, chi tiết
  31. Giáo án Toán 11 (Kết nối tri thức 2023) Bài tập cuối chương 1
  32. Giải SGK Toán 11 (Kết nối tri thức) Bài tập cuối chương 1 trang 40
  33. Bài giảng điện tử Dãy số | Kết nối tri thức Giáo án PPT Toán 11
  34. 20 Bài tập Dãy số (sách mới) có đáp án – Toán 11
  35. Giáo án Toán 11 Bài 5 (Kết nối tri thức 2023): Dãy số
  36. Lý thuyết Dãy số (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  37. Giải SGK Toán 11 Bài 5 (Kết nối tri thức): Dãy số
  38. Bài giảng điện tử Cấp số cộng | Kết nối tri thức Giáo án PPT Toán 11
  39. Giáo án Toán 11 Bài 6 (Kết nối tri thức 2023): Cấp số cộng
  40. Lý thuyết Cấp số cộng (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  41. Giải SGK Toán 11 Bài 6 (Kết nối tri thức): Cấp số cộng
  42. Bài giảng điện tử Cấp số nhân | Kết nối tri thức Giáo án PPT Toán 11
  43. 20 Bài tập Cấp số nhân (sách mới) có đáp án – Toán 11
  44. Giáo án Toán 11 Bài 7 (Kết nối tri thức 2023): Cấp số nhân
  45. Lý thuyết Cấp số nhân (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  46. Giải SGK Toán 11 Bài 7 (Kết nối tri thức): Cấp số nhân
  47. Bài giảng điện tử Bài tập cuối chương 2 trang 56 | Kết nối tri thức Giáo án PPT Toán 11
  48. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 2 trang 40
  49. Giáo án Toán 11 (Kết nối tri thức 2023) Bài tập cuối chương 2
  50. Lý thuyết Toán 11 Chương 2 (Kết nối tri thức 2023): Dãy số. Cấp số cộng và cấp số nhân hay, chi tiết
  51. Giải SGK Toán 11 (Kết nối tri thức) Bài tập cuối chương 2 trang 56
  52. Giáo án Toán 11 Bài 8 (Kết nối tri thức 2023): Mẫu số liệu ghép nhóm

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán