Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 11

Giải Chuyên đề Toán 11 Chân trời sáng tạo Bài 1: Đồ thị

By admin 09/10/2023 0

Giải Chuyên đề Toán 11 Bài 1: Đồ thị

Khởi động trang 44 Chuyên đề Toán 11: Bảng 1 cho biết các đường bay (hai chiều) giữa sáu thành phố A, B, C, D, E và F (dấu Khởi động trang 44 Chuyên đề học tập Toán 11 Chân trời sáng tạo biểu thị có đường bay, dấu Khởi động trang 44 Chuyên đề học tập Toán 11 Chân trời sáng tạo biểu thị không có đường bay) của hãng hàng không X. Nếu dùng điểm để biểu thị thành phố, đoạn đường cong hoặc đường thẳng để biểu thị đường bay giữa các thành phố thì ta được sơ đồ như Hình 1.

Khởi động trang 44 Chuyên đề học tập Toán 11 Chân trời sáng tạo1

Có người thắc mắc: “Từ thành phố A, có thể thăm năm thành phố B, C, D, E và F bằng các chuyến bay của hãng X sao cho mỗi thành phố chỉ qua đúng một lần, rồi quay trở về A không?”.

Để giải đáp thắc mắc trên, nên dùng Bảng 1 hay sơ đồ ở Hình 1? Tại sao?

Lời giải:

Để giải đáp thắc mắc trên, ta nên dùng sơ đồ ở Hình 1,vì sơ đồ của Hình 1 giúp ta có cái nhìn bao quát về mối liên hệ giữa các đường bay từ thành phố này đến thành phố kia.

1. Đồ thị

Khám phá 1 trang 44 Chuyên đề Toán 11:

Khám phá 1 trang 44 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Sử dụng sơ đồ ở Hình 1 để trả lời các câu hỏi dưới đây:

a) Từ thành phố A, hãng X có bao nhiêu đường bay đến năm thành phố còn lại?

b) Giữa sáu thành phố trên, có tất cả bao nhiêu đường bay của hãng X?

c) Có thể giải đáp thắc mắc ở Hoạt động khởi động không?

Lời giải:

a) Quan sát sơ đồ ở Hình 1, ta thấy:

⦁ Có 1 đường bay từ thành phố A đến thành phố B;

⦁ Có 1 đường bay từ thành phố A đến thành phố D;

⦁ Có 1 đường bay từ thành phố A đến thành phố E;

⦁ Có 1 đường bay từ thành phố A đến thành phố F.

Vậy từ thành phố A, hãng X có tất cả 4 đường bay đến năm thành phố còn lại.

b)Vì đường bay của hãng X là đường bay hai chiều nên đường bay từ thành phố B đến thành phố A đã được tính vào đường bay từ thành phố A đến thành phố B.

Do đó từ thành phố B, hãng X có thêm:

⦁ 1 đường bay đến thành phố C;

⦁ 1 đường bay đến thành phố D;

⦁ 1 đường bay đến thành phố F.

Khi đó, từ thành phố B, hãng X có thêm 3 đường bay đến năm thành phố còn lại.

Tương tự như vậy, ta được:

– Từ thành phố C, hãng X có thêm 2 đường bay đến năm thành phố còn lại;

– Từ thành phố D, hãng X có thêm 1 đường bay đến năm thành phố còn lại;

– Từ thành phố E, hãng X có thêm 1 đường bay đến năm thành phố còn lại.

Vì đường bay của hãng X là đường bay hai chiều nên đường bay từ thành phố F đến năm thành phố còn lại đã được tính vào các đường bay kể trên.

Vậy giữa sáu thành phố trên, có tất cả 4 + 3 + 2 + 1 + 1 = 11 đường bay của hãng X.

Chú ý: Ngoài cách trên, ta có thể đếm số đường cong và đường thẳng (thể hiện đường bay) trên Hình 1 (hoặc Bảng 1) để kết luận về số đường bay của hãng X.

c) Ta có thể giải đáp thắc mắc ở Hoạt động khởi động như sau:

Bước 1: Từ thành phố A bay đến thành phố B;

Bước 2: Từ thành phố B bay đến thành phố C;

Bước 3: Từ thành phố C bay đến thành phố D;

Bước 4: Từ thành phố D bay đến thành phố F;

Bước 5: Từ thành phố F bay đến thành phố E;

Bước 6: Từ thành phố E bay về thành phố A.

Vậy từ thành phố A, ta có thể thăm năm thành phố B, C, D, E và F bằng các chuyến bay của hãng X sao cho mỗi thành phố chỉ qua đúng một lần, rồi quay trở về A.

Chú ý: Ta có thể thay đổi thứ tự bay đến các thành phố chỉ cần hãng X có chuyến bay giữa hai thành phố liền kề.

Thực hành 1 trang 46 Chuyên đề Toán 11: Cho đồ thị G như Hình 5.

a) Chỉ ra các đỉnh, các cạnh, số đỉnh, số cạnh của G.

b) Chỉ ra các đỉnh kề đỉnh D, các đỉnh kề đỉnh B.

c) Đồ thị G có đỉnh cô lập không?

Thực hành 1 trang 46 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Lời giải:

Thực hành 1 trang 46 Chuyên đề học tập Toán 11 Chân trời sáng tạo

a) Các đỉnh của đồ thị G là: A, B, C, D, E và F. Đồ thị có 6 đỉnh.

Các cạnh của đồ thị G là: AC, AD, AE, a, b, c, BD, CD, CF, DE. Đồ thị có 10 cạnh.

b) Các đỉnh kề đỉnh D là: A, B, C, E.

Các đỉnh kề đỉnh B là: C, D.

c) Đồ thị G không có đỉnh cô lập.

Vận dụng 1 trang 46 Chuyên đề Toán 11: Một mạng cục bộ có bảy máy tính 1; 2; 3; 4; 5; 6 và 7. Bảng 2 cho biết giữa mỗi cặp máy tính có kết nối trực tiếp với nhau hay không (dấu Vận dụng 1 trang 46 Chuyên đề học tập Toán 11 Chân trời sáng tạo là có kết nối, dấu Vận dụng 1 trang 46 Chuyên đề học tập Toán 11 Chân trời sáng tạo là không kết nối). Hãy vẽ đồ thị biểu diễn sự kết nối giữa các máy tính của mạng này.

Vận dụng 1 trang 46 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Lời giải:

Ta vẽ đồ thị G có 7 đỉnh A, B, C, D, E, F, G lần lượt biểu diễn bảy máy tính 1; 2; 3; 4; 5; 6 và 7.

Hai đỉnh được nối bằng một cạnh nếu giữa hai máy tính có kết nối trực tiếp với nhau.

Ta có đồ thị G như sau:

Vận dụng 1 trang 46 Chuyên đề học tập Toán 11 Chân trời sáng tạo

2. Bậc của đỉnh

Khám phá 2 trang 46 Chuyên đề Toán 11: Đồ thị ở Hình 6 biểu diễn năm ngôi làng A, B, C, D và E cùng các con đường giữa chúng (mỗi cạnh biểu diễn một con đường giữa hai ngôi làng). Biết rằng mỗi con đường ra, vào làng đều phải đi qua một cổng chào; hai con đường khác nhau thì ra, vào làng qua hai cổng chào khác nhau. Ngoài ra, các ngôi làng không còn cổng chào nào khác.

Khám phá 2 trang 46 Chuyên đề học tập Toán 11 Chân trời sáng tạo

a) Ngôi làng nào có ít cổng chào nhất? Ngôi làng nào có nhiều cổng chào nhất?

b) Năm ngôi làng có tất cả bao nhiêu cổng chào?

Lời giải:

a) Do ta có 3 con đường để ra, vào ngôi làng A nên ngôi làng A có 3 cổng chào.

Tương tự như vậy, ta có:

⦁ Ngôi làng B có 5 cổng chào;

⦁ Ngôi làng C có 2 cổng chào;

⦁ Ngôi làng D có 3 cổng chào;

⦁ Ngôi làng E có 3 cổng chào.

Vậy ngôi làng có ít cổng chào nhất là ngôi làng C (với 2 cổng chào); ngôi làng có nhiều cổng chào nhất là ngôi làng B (với 5 cổng chào).

b) Quan sát Hình 6, đồ thị có tất cả 8 cạnh (mỗi cạnh biểu diễn 1 con đường giữa hai ngôi làng) nên năm ngôi làng có tất cả 8 cổng chào.

Thực hành 2 trang 48 Chuyên đề Toán 11: Cho đồ thị như Hình 11.

Thực hành 2 trang 48 Chuyên đề học tập Toán 11 Chân trời sáng tạo

a) Hãy chỉ ra bậc của tất cả các đỉnh và tìm tổng của chúng.

b) Tìm tất cả các đỉnh kề với đỉnh B. Số đỉnh này có bằng bậc của đỉnh B không?

Lời giải:

a) Số cạnh của đồ thị có A là đầu mút là: 4.Suy ra bậc của đỉnh A là: d(A) = 4.

Tương tự như vậy, ta có: d(B) = 4; d(C) = 5; d(D) = 4; d(E) = 2; d(F) = 1.

Tổng các bậc của các đỉnh của đồ thị là: 4 + 4 + 5 + 4 + 2 + 1 = 20.

b) Tất cả các đỉnh kề với đỉnh B là: A, C, D.Suy ra có 3 đỉnh kề với đỉnh B.

Mà bậc của đỉnh B là: d(B) = 4.

Vì 3 ≠ 4 nên 3 ≠ d(B).

Vậy số đỉnh kề với đỉnh B không bằng bậc của đỉnh B.

Vận dụng 2 trang 48 Chuyên đề Toán 11: Có hay không một đồ thị có ba đỉnh, trong đó hai đỉnh có bậc bằng 2 và một đỉnh có bậc bằng 3?

Lời giải:

Không có, vì tổng tất cả các bậc của các đỉnh là 2 + 2 + 3 = 7 là một số lẻ.

Bài tập

Bài 1 trang 48 Chuyên đề Toán 11: Hãy chỉ ra các đỉnh, các cạnh, số đỉnh, số cạnh của mỗi đồ thị như Hình 12.

Bài 1 trang 48 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Lời giải:

⦁ Hình 12a:

Các đỉnh của đồ thị là: A, B, C, D.Số đỉnh của đồ thị là: 4.

Các cạnh của đồ thị là: AB, AC, AD, BC, BD, CD.Số cạnh của đồ thị là: 6.

⦁ Hình 12b:

Các đỉnh của đồ thị là: A, B, C, D, E, F.Số đỉnh của đồ thị là: 6.

Các cạnh của đồ thị là: m, n, AC, AD, BC, CD, CE, DF, EF.Số cạnh của đồ thị là: 9.

Bài 2 trang 48 Chuyên đề Toán 11: Cho đồ thị như Hình 13.

Bài 2 trang 48 Chuyên đề học tập Toán 11 Chân trời sáng tạo

a) Chỉ ra bậc của các đỉnh của đồ thị.

b) Chỉ ra các đỉnh bậc lẻ của đồ thị.

c) Tính tổng tất cả các bậc của các đỉnh của đồ thị.

Lời giải:

a) Số cạnh của đồ thị có A là đầu mút là: 2.Suy ra bậc của đỉnh A là: d(A) = 2.

Tương tự như vậy, ta có: d(B) = 3; d(C) = 5; d(D) = 5; d(E) = 1; d(F) = 0.

b) Từ kết quả câu a), ta có các đỉnh bậc lẻ của đồ thị là: B, C, D, E.

c) Tổng tất cả các bậc của các đỉnh của đồ thị là: 2 + 3 + 5 + 5 + 1 + 0 = 16.

Bài 3 trang 49 Chuyên đề Toán 11: Một đồ thị có bốn đỉnh có bậc lần lượt là 2; 3; 4; 3. Tính số cạnh của đồ thị và vẽ đồ thị này.

Lời giải:

Tổng tất cả các bậc của bốn đỉnh của đồ thị là: 2 + 3 + 4 + 3 = 12.

Vậy số cạnh của đồ thị là: 122=6.

Ta vẽ đồ thị như sau:

– Gọi 4 đỉnh của đồ thị là A, B, C, D có bậc của mỗi đỉnh lần lượt là 2; 3; 4; 3.

– Ta bắt đầu vẽ từ đỉnh có số bậc cao nhất là đỉnh C: Xuất phát từ đỉnh C, ta nối một cạnh tới đỉnh A; hai cạnh tới đỉnh B và một cạnh tới đỉnh D.

– Tiếp theo, do có hai đỉnh B, D có số bậc là 3 nên ta tùy ý chọn một đỉnh là đỉnh B để vẽ tiếp. Lúc này, ta thấy đỉnh B đã có sẵn hai cạnh nên ta nối thêm một cạnh từ đỉnh B đến đỉnh D.

– Cuối cùng, vì đỉnh D, A có số cạnh lần lượt là 3, 2 (tức là đỉnh D còn thiếu một cạnh và đỉnh A cũng còn thiếu một cạnh) nên ta nối một cạnh giữa hai đỉnh D và A.

Đồ thị thỏa mãn yêu cầu bài toán là:

Bài 3 trang 49 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Chú ý: Ngoài đồ thị đã vẽ ở trên, ta có thể vẽ thêm các đồ thị khác cũng thỏa mãn yêu cầu đề bài.

Bài 4 trang 49 Chuyên đề Toán 11: Biết rằng G là đồ thị có 6 đỉnh, 8 cạnh và các đỉnh của nó có bậc 2 hoặc 4. Đồ thị có bao nhiêu đỉnh bậc 4? Hãy vẽ một đồ thị như vậy.

Lời giải:

Theo Định lí, ta có tổng tất cả các bậc của các đỉnh bằng hai lần số cạnh của đồ thị.

Suy ra tổng tất cả các bậc của các đỉnh là: 2.8 = 16.

Theo đề, ta có đồ thị G có 6 đỉnh và các đỉnh của đồ thị G có bậc 2 hoặc 4.

Mà 2 + 2 + 2 + 2 + 4 + 4 = 16.

Vậy đồ thị G có 2 đỉnh bậc 4 và 4 đỉnh bậc 2.

Ta vẽ đồ thị như sau:

– Gọi 6 đỉnh của đồ thị là A, B, C, D, E, F có bậc của mỗi đỉnh lần lượt là 4; 4; 2; 2; 2; 2.

– Do có hai đỉnh A, B có số bậc cao nhất là 4 nên ta tùy ý chọn một đỉnh là đỉnh A để bắt đầu vẽ. Xuất phát từ đỉnh A, ta lần lượt nối tới các đỉnh B, C, D, E, mỗi đỉnh một cạnh.

– Tiếp theo, ta vẽ từ đỉnh có số bậc cao nhất còn lại là đỉnh B. Do từ đỉnh B đã có sẵn một cạnh đã vẽ ở trên nên xuất phát từ đỉnh B, ta lần lượt vẽ thêm đến các đỉnh C, D, F, mỗi đỉnh một cạnh.

– Cuối cùng, ta thấy các đỉnh C, D đều có số bậc là 2. Mà hai đỉnh này ta đã vẽ xong hai cạnh cho mỗi đỉnh nên kế tiếp ta sẽ xét đến hai điểm còn lại là E, F.

Ta thấy với các đỉnh E, F, mỗi đỉnh đều đã có sẵn một cạnh đã vẽ trước đó nên ta nối một cạnh giữa hai đỉnh E và F.

Một đồ thị thỏa mãn yêu cầu bài toán là:

Bài 4 trang 49 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Chú ý: Ngoài đồ thị đã vẽ ở trên, ta có thể vẽ thêm các đồ thị khác cũng thỏa mãn yêu cầu đề bài.

Bài 5 trang 49 Chuyên đề Toán 11: Có năm học sinh An, Bình, Mai, Quang, Xuân. Biết rằng An quen Bình, Bình quen Quang, An quen Mai, Mai quen Xuân, Xuân quen Quang. Các cặp không được liệt kê ở trên thì không quen nhau. Hãy vẽ đồ thị để thể hiện mối quan hệ quen nhau giữa các học sinh trên.

Lời giải:

Ta vẽ đồ thị G có 5 đỉnh A, B, M, Q, X lần lượt biểu diễn năm học sinh An, Bình, Mai, Quang, Xuân.

Hai đỉnh được nối bằng một cạnh nếu giữa hai người mà chúng biểu diễn quen nhau.

Ta có đồ thị G như sau:

Bài 5 trang 49 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Bài 6 trang 49 Chuyên đề Toán 11: Cho tập hợp số V = {2; 3; 4; 5; 6; 7; 11; 12}. Hãy vẽ đồ thị có các đỉnh biểu diễn các phần tử của V, hai đỉnh kề nhau nếu hai số mà chúng biểu diễn nguyên tố cùng nhau (tức có ước chung lớn nhất bằng 1).

Lời giải:

Trong tập hợp số V, ta có các cặp số sau nguyên tố cùng nhau:

• (2 và 3); (2 và 5); (2 và 7); (2 và 11);

• (3 và 4); (3 và 5); (3 và 7); (3 và 11);

• (4 và 5); (4 và 7); (4 và 11);

• (5 và 6); (5 và 7); (5 và 11); (5 và 12);

• (6 và 7); (6 và 11);

• (7 và 11); (7 và 12);

• (11 và 12).

Ta vẽ đồ thị G có 8 đỉnh A2, A3, A4, A5, A6, A7, A11, A12 lần lượt biểu diễn tám số 2; 3; 4; 5; 6; 7; 11; 12 trong tập hợp số V.

Hai đỉnh được nối bằng một cạnh nếu hai số mà chúng biểu diễn nguyên tố cùng nhau.

Ta có đồ thị G như sau:

Bài 6 trang 49 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Xem thêm các bài giải Chuyên đề học tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:

Bài tập cuối chuyên đề 1

Bài 1: Đồ thị

Bài 2: Đường đi Euler và đường đi Hamilton

Bài 3: Bài toán tìm đường đi ngắn nhất

Bài tập cuối chuyên đề 2

Xem thêm các bài giải Chuyên đề học tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:

Chuyên đề 1: Phép biến hình phẳng

Chuyên đề 2: Lý thuyết đồ thị

Chuyên đề 3: Một số yếu tố vẽ kĩ thuật

Tags : Tags Giải bài tập   Toán 11
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giải Chuyên đề Toán 11 Chân trời sáng tạo Bài 2: Đường đi Euler và đường đi Hamilton

Next post

Giải Chuyên đề Toán 11 Chân trời sáng tạo Chuyên đề 3: Một số yếu tố vẽ kĩ thuật

Bài liên quan:

Bài giảng điện tử Giá trị lượng giác của góc lượng giác | Kết nối tri thức Giáo án PPT Toán 11

Bài giảng điện tử Toán 11 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 11

20 Bài tập Góc lượng giác. Giá trị lượng giác của góc lượng giác (sách mới) có đáp án – Toán 11

Giải sgk tất cả các môn lớp 11 Kết nối tri thức | Giải sgk các môn lớp 11 chương trình mới

Giải SBT Toán 11 Kết nối tri thức | Sách bài tập Toán 11 Kết nối tri thức (hay, chi tiết)

Giải sgk Toán 11 (cả 3 bộ sách) | Giải bài tập Toán 11 (hay, chi tiết)

Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11

Tổng hợp Lý thuyết Toán lớp 11 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 11 Kết nối tri thức hay, chi tiết

Leave a Comment Hủy

Mục lục

  1. Bài giảng điện tử Giá trị lượng giác của góc lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  2. Bài giảng điện tử Toán 11 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 11
  3. 20 Bài tập Góc lượng giác. Giá trị lượng giác của góc lượng giác (sách mới) có đáp án – Toán 11
  4. Giải sgk tất cả các môn lớp 11 Kết nối tri thức | Giải sgk các môn lớp 11 chương trình mới
  5. Giải SBT Toán 11 Kết nối tri thức | Sách bài tập Toán 11 Kết nối tri thức (hay, chi tiết)
  6. Giải sgk Toán 11 (cả 3 bộ sách) | Giải bài tập Toán 11 (hay, chi tiết)
  7. Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  8. Tổng hợp Lý thuyết Toán lớp 11 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 11 Kết nối tri thức hay, chi tiết
  9. Giáo án Toán 11 Bài 1 (Kết nối tri thức 2023): Giá trị lượng giác của góc lượng giác
  10. Giáo án Toán 11 Kết nối tri thức năm 2023 (mới nhất)
  11. Giải SGK Toán 11 Bài 1 (Kết nối tri thức): Giá trị lượng giác của góc lượng giác
  12. Giải sgk Toán 11 Kết nối tri thức | Giải bài tập Toán 11 Kết nối tri thức Tập 1, Tập 2 (hay, chi tiết)
  13. Bài giảng điện tử Công thức lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  14. 20 Bài tập Công thức lượng giác (sách mới) có đáp án – Toán 11
  15. Lý thuyết Công thức lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  16. Giáo án Toán 11 Bài 2 (Kết nối tri thức 2023): Công thức lượng giác
  17. Giải SGK Toán 11 Bài 2 (Kết nối tri thức): Công thức lượng giác
  18. Bài giảng điện tử Hàm số lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  19. 20 Bài tập Hàm số lượng giác và đồ thị (sách mới) có đáp án – Toán 11
  20. Lý thuyết Hàm số lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  21. Giáo án Toán 11 Bài 3 (Kết nối tri thức 2023): Hàm số lượng giác
  22. Giải SGK Toán 11 Bài 3 (Kết nối tri thức): Hàm số lượng giác
  23. Bài giảng điện tử Phương trình lượng giác cơ bản | Kết nối tri thức Giáo án PPT Toán 11
  24. 20 Bài tập Phương trình lượng giác cơ bản (sách mới) có đáp án – Toán 11
  25. Lý thuyết Phương trình lượng giác cơ bản (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  26. Giáo án Toán 11 Bài 4 (Kết nối tri thức 2023): Phương trình lượng giác cơ bản
  27. Giải SGK Toán 11 Bài 4 (Kết nối tri thức): Phương trình lượng giác cơ bản
  28. Bài giảng điện tử Bài tập cuối chương 1 trang 40 | Kết nối tri thức Giáo án PPT Toán 11
  29. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 1 trang 25
  30. Lý thuyết Toán 11 Chương 1 (Kết nối tri thức 2023): Hàm số lượng giác và phương trình lượng giác hay, chi tiết
  31. Giáo án Toán 11 (Kết nối tri thức 2023) Bài tập cuối chương 1
  32. Giải SGK Toán 11 (Kết nối tri thức) Bài tập cuối chương 1 trang 40
  33. Bài giảng điện tử Dãy số | Kết nối tri thức Giáo án PPT Toán 11
  34. 20 Bài tập Dãy số (sách mới) có đáp án – Toán 11
  35. Giáo án Toán 11 Bài 5 (Kết nối tri thức 2023): Dãy số
  36. Lý thuyết Dãy số (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  37. Giải SGK Toán 11 Bài 5 (Kết nối tri thức): Dãy số
  38. Bài giảng điện tử Cấp số cộng | Kết nối tri thức Giáo án PPT Toán 11
  39. 20 Bài tập Cấp số cộng (sách mới) có đáp án – Toán 11
  40. Giáo án Toán 11 Bài 6 (Kết nối tri thức 2023): Cấp số cộng
  41. Lý thuyết Cấp số cộng (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  42. Giải SGK Toán 11 Bài 6 (Kết nối tri thức): Cấp số cộng
  43. Bài giảng điện tử Cấp số nhân | Kết nối tri thức Giáo án PPT Toán 11
  44. 20 Bài tập Cấp số nhân (sách mới) có đáp án – Toán 11
  45. Giáo án Toán 11 Bài 7 (Kết nối tri thức 2023): Cấp số nhân
  46. Lý thuyết Cấp số nhân (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  47. Giải SGK Toán 11 Bài 7 (Kết nối tri thức): Cấp số nhân
  48. Bài giảng điện tử Bài tập cuối chương 2 trang 56 | Kết nối tri thức Giáo án PPT Toán 11
  49. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 2 trang 40
  50. Giáo án Toán 11 (Kết nối tri thức 2023) Bài tập cuối chương 2
  51. Lý thuyết Toán 11 Chương 2 (Kết nối tri thức 2023): Dãy số. Cấp số cộng và cấp số nhân hay, chi tiết
  52. Giải SGK Toán 11 (Kết nối tri thức) Bài tập cuối chương 2 trang 56

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán