Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 11

20 Bài tập Hình lăng trụ và hình hộp (sách mới) có đáp án – Toán 11

By admin 09/10/2023 0

Bài tập Toán 11 Hình lăng trụ và hình hộp

A. Bài tập Hình lăng trụ và hình hộp

Bài 1. Cho hình lăng trụ ABC.A’B’C’. Gọi M, N lần lượt là trung điểm của các cạnh AB, A’B’. Chứng minh:

a) Tứ giác MNC’C là hình bình hành.

b) (B’MC) // (ANC’).

Hướng dẫn giải

Lý thuyết Toán 11 Cánh diều Bài 5: Hình lăng trụ và hình hộp

a) Hình bình hành ABB’A’ có: M, N là trung điểm AB, A’B’.

Suy ra MN là đường trung bình của hình bình hành ABB’A’.

Do đó MN // BB’ và MN = BB’.

Mà BB’ // CC’ và BB’ = CC’ (do tứ giác BCC’B’ là hình bình hành).

Suy ra MN // CC’ và MN = CC’.

Vậy tứ giác MNC’C là hình bình hành.

b) Ta có ABB’A’ là hình bình hành.

Suy ra A’B’ // AB và A’B’ = AB.

Mà M, N lần lượt là trung điểm của AB, A’B’.

Do đó B’N // AM và B’N = AM.

Vì vậy tứ giác AMB’N là hình bình hành.

Khi đó AN // B’M.

Suy ra AN // (B’MC)   (1)

Ta có tứ giác MNC’C là hình bình hành, suy ra NC’ // MC.

Do đó NC’ // (B’MC)  (2)

Trong (ANC’) có N = AN ∩ NC’   (3)

Từ (1), (2), (3), ta thu được (ANC’) // (B’MC).

Bài 2. Cho hình hộp ABCD.A’B’C’D’. Gọi M là trung điểm AB và N là giao điểm của A’D và AD’.

a) Xác định giao tuyến d của hai mặt phẳng (CMN) và (ADD’A’).

b) Gọi F, G lần lượt là giao điểm của đường thẳng d với các đường thẳng AA’ và DD’. Chứng minh MF // CG.

Hướng dẫn giải

Lý thuyết Toán 11 Cánh diều Bài 5: Hình lăng trụ và hình hộp

a) Trong (ABCD): gọi E = CM ∩ AD.

Mà CM ⊂ (CMN) và AD ⊂ (ADD’A’).

Suy ra E đều thuộc (CMN) và (ADD’A’)   (1)

Lại có N là giao điểm của AD’ và A’D (giả thiết).

Suy ra N nằm trên mặt phẳng (ADD’A’).

Do đó N đều thuộc (CMN) và (ADD’A’)   (2)

Từ (1), (2), ta thu được NE là giao tuyến của (CMN) và (ADD’A’) hay d ≡ NE.

b) Ta có M ∈ AB (giả thiết).

Mà AB ⊂ (ABB’A’), suy ra M ∈ (ABB’A’).

Lại có M ∈ (CMN) nên M đều thuộc (CMN) và (ABB’A’)   (3)

Ta có F ∈ NE và F ∈ AA’.

Mà NE ⊂ (CMN) và AA’ ⊂ (ABB’A’).

Suy ra F đều thuộc hai mặt phẳng (CMN) và (ABB’A’)   (4)

Từ (3), (4), suy ra MF là giao tuyến của (CMN) và (ABB’A’).

Chứng minh tương tự, ta được CG là giao tuyến của (CMN) và (CDD’C).

Ta có (ABB’A’) // (CDD’C) (tính chất hình hộp).

Mà (CMN) ∩ (ABB’A’) = MF và (CMN) ∩ (CDD’C) = CG.

Vậy MF // CG.

Bài 3. Cho hình lăng trụ ABC.A’B’C’. Gọi M, N lần lượt là trung điểm của các cạnh BB’, CC’.

a) Xác định giao tuyến d của hai mặt phẳng (AMN) và (A’B’C’).

b) Chứng minh d // (ABC).

Hướng dẫn giải

Lý thuyết Toán 11 Cánh diều Bài 5: Hình lăng trụ và hình hộp

a) Trong (AA’C’C): gọi D = A’C’ ∩ AN.

Mà A’C’ ⊂ (A’B’C’) và AN ⊂ (AMN).

Suy ra D đều thuộc hai mặt phẳng (AMN) và (A’B’C’)   (1)

Trong (AA’B’B): gọi E = AM ∩ A’B’.

Mà AM ⊂ (AMN) và A’B’ ⊂ (A’B’C’).

Suy ra E đều thuộc hai mặt phẳng (AMN) và (A’B’C’)   (2)

Từ (1), (2), suy ra DE là giao tuyến của hai mặt phẳng (AMN) và (A’B’C’) hay d ≡ DE.

b) Hình bình hành BCC’B’, có: M, N lần lượt là trung điểm của BB’, CC’.

Suy ra MN là đường trung bình của hình bình hành BCC’B’.

Do đó MN // B’C’ // BC.

Ta có:

⦁ MN = (AMN) ∩ (MNC’B’);

⦁ B’C’ = (A’B’C’) ∩ (MNC’B’);

⦁ DE = (AMN) ∩ (A’B’C’);

⦁ MN // B’C’ (chứng minh trên).

Suy ra DE // MN // B’C’.

Mà B’C’ // BC (chứng minh trên).

Do đó DE // BC.

Mà BC ⊂ (ABC).

Vậy DE // (ABC) hay d // (ABC).

B. Lý thuyết Hình lăng trụ và hình hộp

1. Hình lăng trụ

1.1. Định nghĩa

Hình gồm hai đa giác A1A2…An, A1’A2’…An’ và các hình bình hành A1A2A2’A1’, A2A3A3’A2’, …, AnA1A1’An’ được gọi là hình lăng trụ, kí hiệu là A1A2…An.A1’A2’…An’.

Hình lăng trụ và hình hộp (Lý thuyết Toán lớp 11) | Cánh diều

Chú ý: Nếu đáy của lăng trụ là một tam giác, tứ giác, ngũ giác,… thì hình lăng trụ tương ứng gọi là hình lăng trụ tam giác, hình lăng trụ tứ giác, hình lăng trụ ngũ giác (Hình 19),…

Hình lăng trụ và hình hộp (Lý thuyết Toán lớp 11) | Cánh diều

Trong hình lăng trụ A1A2…An.A1’A2’…An’:

– Hai đa giác A1A2…An và A1’A2’…An’ gọi là hai mặt đáy;

– Các hình bình hành A1A2A2’A1’, A2A3A3’A2’, …, AnA1A1’An’ gọi là các mặt bên;

– Các cạnh của hai mặt đáy gọi là các cạnh đáy;

– Các đoạn thẳng A1A1’, A2A2’, …, AnAn’ gọi là các cạnh bên;

– Các đỉnh của hai mặt đáy gọi là các đỉnh của hình lăng trụ.

1.2. Tính chất

Hình lăng trụ có:

⦁ Các cạnh bên song song và bằng nhau.

⦁ Các mặt bên là các hình bình hành.

⦁ Hai mặt đáy là hai đa giác có các cạnh tương ứng song song và bằng nhau.

Ví dụ 1. Cho hình lăng trụ ABC.A’B’C’. Gọi G, G’ lần lượt là trọng tâm của các tam giác ABC, A’B’C’. Lấy điểm M trên cạnh AC sao cho AM = 2MC. Chứng minh:

a) GM // (BCC’B’).

b) (GG’M) // (BCC’B’).

Hướng dẫn giải

Hình lăng trụ và hình hộp (Lý thuyết Toán lớp 11) | Cánh diều

a) Gọi I là trung điểm BC.

Vì G là trọng tâm của tam giác ABC nên AGAI=23.

Lại có AM = 2MC, suy ra AMAC=23.

Khi đó AGAI=AMAC.

Áp dụng định lí Thales đảo, ta được GM // BC.

Suy ra GM // (BCC’B’)   (1)

b) Ta có G, G’ lần lượt là trọng tâm của các tam giác ABC, A’B’C’ bằng nhau

Suy ra AG = A’G’ và AG // A’G’.

Do đó tứ giác AGG’A’ là hình bình hành.

Vì vậy AA’ // GG’.

Mà AA’ // BB’ (do ABB’A’ là hình bình hành).

Suy ra GG’ // BB’.

Do đó GG’ // (BCC’B’)    (2)

Trong (GG’M): GM ∩ GG’ = G   (3)

Từ (1), (2), (3), ta thu được (GG’M) // (BCC’B’).

2. Hình hộp

2.1. Định nghĩa

Hình hộp là hình lăng trụ có đáy là hình bình hành.

Hình lăng trụ và hình hộp (Lý thuyết Toán lớp 11) | Cánh diều

Trong mỗi hình hộp, ta gọi:

– Hai mặt không có đỉnh chung là hai mặt đối diện;

– Hai cạnh song song không nằm trong một mặt là hai cạnh đối diện;

– Hai đỉnh không thuộc cùng một mặt là hai đỉnh đối diện;

– Đoạn thẳng nối hai đỉnh đối diện là đường chéo.

Ví dụ 2. Liệt kê các cặp mặt đối diện, các cặp cạnh đối diện, các cặp đỉnh đối diện và các đường chéo của hình hộp MNPQ.M’N’P’Q’.

Hướng dẫn giải

Hình lăng trụ và hình hộp (Lý thuyết Toán lớp 11) | Cánh diều

Trong hình hộp MNPQ.M’N’P’Q’, ta có:

– Ba cặp mặt đối diện: (MNPQ) và (M’N’P’Q’); (MNN’M’) và (PQQ’P’); (NPP’N’) và (MQQ’M’).

– Sáu cặp cạnh đối diện: MN và P’Q’; NP và M’Q’; PQ và M’N’; MQ và N’P’; NN’ và QQ’; MM’ và PP’.

– Bốn cặp đỉnh đối diện: M và P’; N và Q’; P và M’; Q và N’.

– Bốn đường chéo: MP’; NQ’; PM’; QN’.

2.2. Tính chất

Hình hộp là một hình lăng trụ nên hình hộp có các tính chất của hình lăng trụ, ngoài ra:

⦁ Các mặt của hình hộp là các hình bình hành.

⦁ Hai mặt phẳng lần lượt chứa hai mặt đối diện của hình hộp song song với nhau.

Nhận xét: Ta có thể coi hai mặt đối diện bất kì của một hình hộp là hai mặt đáy của nó.

Ví dụ 3. Cho hình hộp ABCD.A’B’C’D’. Gọi giao điểm của AC và BD là O; giao điểm của A’C’ và B’D’ là O’. Chứng minh (O’AB) // (OC’D’).

Hướng dẫn giải

Hình lăng trụ và hình hộp (Lý thuyết Toán lớp 11) | Cánh diều

Ta có AB // C’D’ (hai cạnh đối diện của hình hộp)

Do đó AB // (OC’D’)   (1)

Ta có AA’ // CC’ và AA’ = CC’.

Suy ra tứ giác ACC’A’ là hình bình hành.

Do đó A’C’ // AC và A’C’ = AC.

Mà O, O’ lần lượt là trung điểm của AC và A’C’.

Suy ra O’C’ // AO và O’C’ = AO.

Vì vậy tứ giác AOC’O’ là hình bình hành.

Do đó O’A // OC’.

Suy ra O’A // (OC’D’)   (2)

Trong (O’AB): O’A ∩ AB = A   (3)

Từ (1), (2), (3), ta thu được (O’AB) // (OC’D’).

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giải sgk Hóa học 11 (cả 3 bộ sách) | Giải bài tập Hóa học 11 (hay, chi tiết) | Giải Hóa 11 (sách mới)

Next post

25 câu Trắc nghiệm Lịch sử 11 Bài 1 (Kết nối tri thức 2023) có đáp án: Một số vấn đề chung về cách mạng tư sản

Bài liên quan:

Bài giảng điện tử Giá trị lượng giác của góc lượng giác | Kết nối tri thức Giáo án PPT Toán 11

Bài giảng điện tử Toán 11 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 11

20 Bài tập Góc lượng giác. Giá trị lượng giác của góc lượng giác (sách mới) có đáp án – Toán 11

Giải sgk tất cả các môn lớp 11 Kết nối tri thức | Giải sgk các môn lớp 11 chương trình mới

Giải SBT Toán 11 Kết nối tri thức | Sách bài tập Toán 11 Kết nối tri thức (hay, chi tiết)

Giải sgk Toán 11 (cả 3 bộ sách) | Giải bài tập Toán 11 (hay, chi tiết)

Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11

Tổng hợp Lý thuyết Toán lớp 11 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 11 Kết nối tri thức hay, chi tiết

Leave a Comment Hủy

Mục lục

  1. Bài giảng điện tử Giá trị lượng giác của góc lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  2. Bài giảng điện tử Toán 11 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 11
  3. 20 Bài tập Góc lượng giác. Giá trị lượng giác của góc lượng giác (sách mới) có đáp án – Toán 11
  4. Giải sgk tất cả các môn lớp 11 Kết nối tri thức | Giải sgk các môn lớp 11 chương trình mới
  5. Giải SBT Toán 11 Kết nối tri thức | Sách bài tập Toán 11 Kết nối tri thức (hay, chi tiết)
  6. Giải sgk Toán 11 (cả 3 bộ sách) | Giải bài tập Toán 11 (hay, chi tiết)
  7. Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  8. Tổng hợp Lý thuyết Toán lớp 11 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 11 Kết nối tri thức hay, chi tiết
  9. Giáo án Toán 11 Bài 1 (Kết nối tri thức 2023): Giá trị lượng giác của góc lượng giác
  10. Giáo án Toán 11 Kết nối tri thức năm 2023 (mới nhất)
  11. Giải SGK Toán 11 Bài 1 (Kết nối tri thức): Giá trị lượng giác của góc lượng giác
  12. Giải sgk Toán 11 Kết nối tri thức | Giải bài tập Toán 11 Kết nối tri thức Tập 1, Tập 2 (hay, chi tiết)
  13. Bài giảng điện tử Công thức lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  14. 20 Bài tập Công thức lượng giác (sách mới) có đáp án – Toán 11
  15. Lý thuyết Công thức lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  16. Giáo án Toán 11 Bài 2 (Kết nối tri thức 2023): Công thức lượng giác
  17. Giải SGK Toán 11 Bài 2 (Kết nối tri thức): Công thức lượng giác
  18. Bài giảng điện tử Hàm số lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  19. 20 Bài tập Hàm số lượng giác và đồ thị (sách mới) có đáp án – Toán 11
  20. Lý thuyết Hàm số lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  21. Giáo án Toán 11 Bài 3 (Kết nối tri thức 2023): Hàm số lượng giác
  22. Giải SGK Toán 11 Bài 3 (Kết nối tri thức): Hàm số lượng giác
  23. Bài giảng điện tử Phương trình lượng giác cơ bản | Kết nối tri thức Giáo án PPT Toán 11
  24. 20 Bài tập Phương trình lượng giác cơ bản (sách mới) có đáp án – Toán 11
  25. Lý thuyết Phương trình lượng giác cơ bản (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  26. Giáo án Toán 11 Bài 4 (Kết nối tri thức 2023): Phương trình lượng giác cơ bản
  27. Giải SGK Toán 11 Bài 4 (Kết nối tri thức): Phương trình lượng giác cơ bản
  28. Bài giảng điện tử Bài tập cuối chương 1 trang 40 | Kết nối tri thức Giáo án PPT Toán 11
  29. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 1 trang 25
  30. Lý thuyết Toán 11 Chương 1 (Kết nối tri thức 2023): Hàm số lượng giác và phương trình lượng giác hay, chi tiết
  31. Giáo án Toán 11 (Kết nối tri thức 2023) Bài tập cuối chương 1
  32. Giải SGK Toán 11 (Kết nối tri thức) Bài tập cuối chương 1 trang 40
  33. Bài giảng điện tử Dãy số | Kết nối tri thức Giáo án PPT Toán 11
  34. 20 Bài tập Dãy số (sách mới) có đáp án – Toán 11
  35. Giáo án Toán 11 Bài 5 (Kết nối tri thức 2023): Dãy số
  36. Lý thuyết Dãy số (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  37. Giải SGK Toán 11 Bài 5 (Kết nối tri thức): Dãy số
  38. Bài giảng điện tử Cấp số cộng | Kết nối tri thức Giáo án PPT Toán 11
  39. 20 Bài tập Cấp số cộng (sách mới) có đáp án – Toán 11
  40. Giáo án Toán 11 Bài 6 (Kết nối tri thức 2023): Cấp số cộng
  41. Lý thuyết Cấp số cộng (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  42. Giải SGK Toán 11 Bài 6 (Kết nối tri thức): Cấp số cộng
  43. Bài giảng điện tử Cấp số nhân | Kết nối tri thức Giáo án PPT Toán 11
  44. 20 Bài tập Cấp số nhân (sách mới) có đáp án – Toán 11
  45. Giáo án Toán 11 Bài 7 (Kết nối tri thức 2023): Cấp số nhân
  46. Lý thuyết Cấp số nhân (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  47. Giải SGK Toán 11 Bài 7 (Kết nối tri thức): Cấp số nhân
  48. Bài giảng điện tử Bài tập cuối chương 2 trang 56 | Kết nối tri thức Giáo án PPT Toán 11
  49. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 2 trang 40
  50. Giáo án Toán 11 (Kết nối tri thức 2023) Bài tập cuối chương 2
  51. Lý thuyết Toán 11 Chương 2 (Kết nối tri thức 2023): Dãy số. Cấp số cộng và cấp số nhân hay, chi tiết
  52. Giải SGK Toán 11 (Kết nối tri thức) Bài tập cuối chương 2 trang 56

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán