Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 11

30 câu Trắc nghiệm Hai mặt phẳng vuông góc có đáp án 2023 – Toán lớp 11

By admin 10/10/2023 0

Trắc nghiệm Hai mặt phẳng vuông góc có đáp án – Toán lớp 11

Câu 1: Cho hình chóp S.ABCD có ABCD là hình chữ nhật. SA vuông góc với (ABCD), AH và AK lần lượt là đường cao của tam giác SAB và SAD.

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   a) Hai mặt phẳng (SAB) và (SBC) vuông góc vì.

   A. Góc của (SAB) và (SBC) là góc ABC và bằng 900.

   B. Góc của (SAB) và (SBC) là góc BAD và bằng 900.

   C. AB ⊥ BC; AB ⊂ (SAB) và BC ⊂ (SBC)

   D. BC ⊥ (SAB) do BC ⊥ AB và BC ⊥ SA

   b) Hai mặt phẳng (SAC) và (AHK) vuông góc vì:

   A. AH ⊥(SBC) (do AH ⊥ SB và AH ⊥ BC); và AK ⊥ (SCD) (do AK⊥SD và AK⊥CD)

   B. AH ⊥(SBC) (do AH ⊥ SB và AH ⊥ BC); và AK ⊥ (SCD) (do AK⊥SD và AK⊥CD) nên SC⊥(AHK)

   C. AH ⊥(SBC) (do AH ⊥ SB và AH ⊥ BC) nên SC⊥(AHK)

   D. AK ⊥(SBC) (do AK ⊥ SD và AK ⊥ CD) nên SC ⊥ (AHK)

Đáp án: a – D, b – B

   a) Phương án A sai vì AB và CB không vuông góc với giao tuyến SB của (SAB) và (SBC), nên góc ABC không phải là góc của hai mặt phẳng này; phương án B sai vì góc BAD không phải là góc của hai mặt phẳng (SAB) với mặt phẳng (SBC); phương án C sai vì AB ⊥ BC thì chưa đủ để kết luận AB vuông góc với mặt phẳng (SBC); phương án D đúng vì : BC ⊥ (SAB) do BC ⊥ AB và BC ⊥ SA ⇒ (SBC) ⊥ (SAB)

   b) Phương án A sai vì hai điều kiện AH ⊥ (SBC) (do AH ⊥ SB và AH ⊥ BC) và AK ⊥ (SCD) (do AK vuông góc với SD và AK ⊥ CD) chưa liên quan đến (SAC); phương án B đúng vì AH ⊥(SBC) và AK ⊥ (SCD) nên SC ⊥ (AHK), từ đó suy ra hai mặt phẳng (AHK) và (SAC) vuông góc; phương án C và D đều sai vì chưa đủ điều kiện kết luận SC ⊥ (AHK)

Câu 2: Cho hai hình vuông ABCD và ABEF cạnh a nằm trên hai mặt phẳng vuông góc.

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   a) DE bằng:

   A. a√3      B. a√2

   C. 3a2      D. a(1 + √3)

   b) Đường thẳng DE vuông góc

   A. Chỉ với AC      B. Chỉ với BF

   C. Chỉ với AC và BF      D. Hoặc với AC hoặc với BF

Đáp án: a – A, b – C

   EB ⊥(ABCD) vì nó vuông góc với giao tuyến AB của hai mặt phẳng vuông góc đã cho ⇒ CD ⊥ (EBC) ⇒ tam giác ECD vuông tại C.

   ⇒ DE = a√3. Vậy phương án A đúng

   Phương án C đúng vì : hình chiếu của DE lên (ABEF) là AE, mà AE ⊥ BF, suy ra DE ⊥ BF; hình chiếu của DE lên (ABCD) là BD, mà AC ⊥ BD, nên suy ra AC ⊥ DE.

Câu 3: Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc giữa cạnh bên với mặt phẳng đáy bằng ∝

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   Tang của góc giữa mặt bên và mặt đáy bằng:

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Đáp án: C

   Chân đường cao hình chóp đều S.ABCD trùng với tâm O của đáy ABCD. AO là hình chiếu của SA lên (ABCD)

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   Gọi M là trung điểm của BC ⇒ OM là hình chiếu của SM lên (ABCD) và MO ⊥ BC.

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Câu 4: Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và SA = SB = SC = a.

   a) Mặt phẳng (ABCD) vuông góc với mặt phẳng:

   A. (SAD)      B. (SBD)

   C. (SDC)      D. (SBC)

   b) Giả sử góc BAD bằng 600. Khoảng cách từ điểm S đến mặt phẳng (ABCD) bằng:

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   c) Góc giữa mặt bên hình chóp S.ABCD và mặt phẳng đáy có tang bằng:

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Đáp án: a – B, b – A, c – D

   a. Gọi I là giao điểm của AC và BD.

   Từ S vẽ SO ⊥ (ABCD)

   ⇒ OA = OB = OC (là hình chiếu của các đường xiên bằng nhau)

   ⇒ O là tâm đường tròn ngoại tiếp tiếp tam giác ABC

   Ta có: BI là đường trung tuyến của tam giác ABC nên O nằm trên đường thẳng BI hay 0 ∈ BD

   Vậy SO ⊂ (SBD) và SO ⊥(ABCD) ⇒ (SBD) ⊥(ABCD)

   b) Tam giác ABD có AB = AD và góc BAD = 600 nên tam giác ABD đều suy ra: BD = a

   Ta có; Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   Tam giác SOB vuông tại O nên

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   

   c. Từ O vẽ OM ⊥ BC ⇒ góc OMS là góc của mặt bên và mặt phẳng đáy

   Ta có: ABCD là hình thoi nên Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Câu 5: Cho tứ diện ABCD có: AB = AC = AD, góc BAC bằng góc BAD bằng 600. Gọi M và N lần lượt là trung điểm của AB và CD.

   a) Góc giữa hai mặt phẳng (ACD) và (BCD) là:

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   b) Mặt phẳng (BCD) vuông góc với mặt phẳng

   A. (CDM)      B. (ACD)

   C. (ABN)      D. (ABC)

   c) Đường vuông góc chung của AB và CD là:

   A. BN      B. AN

   C. BC      D. MN

Đáp án: a- B, b – C, c – D

   a. Các tam giác ABC và ABD là tam giác đều ⇒ tam giác ACD cân

   ⇒ BN ⊥ CD và AN ⊥ CD ⇒ góc ANB là góc của hai mặt phẳng (ACD) và (BCD)

   b. Ta có CD ⊥ (ABN) (do BN ⊥ CD và AN ⊥ CD) ⇒ (BCD) ⊥ (ABN)

   c. CD ⊥ MN; AB ⊥ (CDM) (do AB ⊥ CM và AB ⊥ DM)

   MN là đường vuông góc chung của AB và CD

Câu 6: Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc.

   a) Khằng định nào sau đây đúng?

   A. AB ⊥ (ACD).

   B. BC ⊥ (ACD).

   C. CD ⊥ (ABC).

   D. AD ⊥ (BCD).

   b) Điểm cách đều bốn điểm A, B, C, D là:

   A. trung điểm J của AB

   B. trung điểm I của BC

   C. trung điểm K của AD

   D. trung điểm M của CD

Đáp án: a – C, b – C

   a. Phương án A sai vì chỉ có AB ⊥ CD; phương án B sai vì chỉ có : BC ⊥ CD

   Phương án C đúng vì

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   Phương án D sai vì AD không vuông góc với đường thẳng nào thuộc mặt phẳng (BCD)

   b. CD ⊥ (ABC) vì CD ⊥ AB và CD ⊥ BC

   AB ⊥ (BCD) vì AB ⊥ BC và AB ⊥ CD

   Phương án A sai vì tam giác ABC không vuông góc tại C nên trung điểm của AB không cách đều ba điểm A, B, C

   Phương án B sai vì tam giác ABC không vuông góc tại A nên trung điểm của BC không cách đều ba điểm A, B, C

   Phương án C đúng vì tam giác ACD vuông góc tại C nên trung điểm K của AD cách đều ba điểm A, C, D; tam giác ABD vuông góc tại B nên trung điểm K của AD cách đều ba điểm A, B và D

   Phương án D sai vì tam giác CBD không vuông góc tại B nên trung điểm của CD không cách đều ba điểm B, C, D

Câu 7: Cho chóp tứ giác đều S.ABCD có tất cả các cạnh bằng a.

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   a) Đường thẳng SA vuông góc với

   A. SC      B. SB

   C. SD      D. CD

   b) Khoảng cách từ D đến mặt phẳng (SAC) bằng:

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Đáp án: a – A, b – D

   a. Tứ giác ABCD là hình vuông nên Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   Tam giác SAC có SA = a, SC = a và AC = a√2 ⇒ SAC là tam giác vuông tại S, hay SA ⊥ SC

   b. Gọi O là giao của AC và BD ⇒ DO ⊥ (SAC) (do DO ⊥ AC và DO ⊥ SO)

   ⇒ khoảng cách từ D đến (SAC) bằng DO

   Ta có: Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Câu 8: Cho hình lập phương ABCD.A’B’C’D’:

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   a) Mặt phẳng (ACC’A’) không vuông góc với.

   A. (ABCD)      B. (CDD’C’)

   C. (BDC’)      D. (A’BD)

   b) Hình chiếu vuông góc của A lên mặt phẳng (A’BD) là:

   A. trung điểm của BD

   B. trung điểm của A’B

   C. trung điểm của A’D

   D. tâm của tam giác BDA’

Đáp án: a – B, b – D

   a) Ta có: Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   *Vì Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   *Vì Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   *Vì Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   Vậy mp(CDD’C’) không vuông góc với mặt phẳng (ACC’A’).

   b)Ta có: BD = A’B = A’D nên tam giác A’BD là tam giác đều.

   Lại có: AB = AD = AA’ nên hình chiếu vuông góc của điểm A lên mp(A’BD) là tâm của tam giác BDA’.

Câu 9: Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc.

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   a) Đường thẳng AB vuông góc với

   A. (BCD)

   B. (ACD)

   C. (ABC)

   D. (CID) với I là trung điểm của AB.

   b) Mặt phẳng (ABD) vuông góc với mặt phẳng nào của tứ diện?

   A. Không vuông góc với mặt nào?

   B. (ACD)      C. (ABC)      D. (BCD)

   c) Đường vuông góc chung của AB và CD là:

   A. AC      B. BC      C. AD      D. BD

Đáp án: a – A, b – D, c – B

   a. AB ⊥ CD và AB ⊥ CD ⇒ AB ⊥ (BCD)

   b. vì AB ⊥ (BCD) ⇒ (ABD) ⊥ (BCD)

   c. BC ⊥ AB và BC ⊥ CD ⇒ BC là đường vuông góc chung của AB và CD

 

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

30 câu Trắc nghiệm Nito và Lưu huỳnh có đáp án 2023 – Hóa học lớp 11

Next post

Giải bài tập SGK Lịch sử 11: Bài 17: Chiến tranh thế giới thứ hai (1939-1945) mới nhất

Bài liên quan:

Bài giảng điện tử Giá trị lượng giác của góc lượng giác | Kết nối tri thức Giáo án PPT Toán 11

Bài giảng điện tử Toán 11 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 11

20 Bài tập Góc lượng giác. Giá trị lượng giác của góc lượng giác (sách mới) có đáp án – Toán 11

Giải sgk tất cả các môn lớp 11 Kết nối tri thức | Giải sgk các môn lớp 11 chương trình mới

Giải SBT Toán 11 Kết nối tri thức | Sách bài tập Toán 11 Kết nối tri thức (hay, chi tiết)

Giải sgk Toán 11 (cả 3 bộ sách) | Giải bài tập Toán 11 (hay, chi tiết)

Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11

Tổng hợp Lý thuyết Toán lớp 11 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 11 Kết nối tri thức hay, chi tiết

Leave a Comment Hủy

Mục lục

  1. Bài giảng điện tử Giá trị lượng giác của góc lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  2. Bài giảng điện tử Toán 11 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 11
  3. 20 Bài tập Góc lượng giác. Giá trị lượng giác của góc lượng giác (sách mới) có đáp án – Toán 11
  4. Giải sgk tất cả các môn lớp 11 Kết nối tri thức | Giải sgk các môn lớp 11 chương trình mới
  5. Giải SBT Toán 11 Kết nối tri thức | Sách bài tập Toán 11 Kết nối tri thức (hay, chi tiết)
  6. Giải sgk Toán 11 (cả 3 bộ sách) | Giải bài tập Toán 11 (hay, chi tiết)
  7. Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  8. Tổng hợp Lý thuyết Toán lớp 11 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 11 Kết nối tri thức hay, chi tiết
  9. Giáo án Toán 11 Bài 1 (Kết nối tri thức 2023): Giá trị lượng giác của góc lượng giác
  10. Giáo án Toán 11 Kết nối tri thức năm 2023 (mới nhất)
  11. Giải SGK Toán 11 Bài 1 (Kết nối tri thức): Giá trị lượng giác của góc lượng giác
  12. Giải sgk Toán 11 Kết nối tri thức | Giải bài tập Toán 11 Kết nối tri thức Tập 1, Tập 2 (hay, chi tiết)
  13. Bài giảng điện tử Công thức lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  14. 20 Bài tập Công thức lượng giác (sách mới) có đáp án – Toán 11
  15. Lý thuyết Công thức lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  16. Giáo án Toán 11 Bài 2 (Kết nối tri thức 2023): Công thức lượng giác
  17. Giải SGK Toán 11 Bài 2 (Kết nối tri thức): Công thức lượng giác
  18. Bài giảng điện tử Hàm số lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  19. 20 Bài tập Hàm số lượng giác và đồ thị (sách mới) có đáp án – Toán 11
  20. Lý thuyết Hàm số lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  21. Giáo án Toán 11 Bài 3 (Kết nối tri thức 2023): Hàm số lượng giác
  22. Giải SGK Toán 11 Bài 3 (Kết nối tri thức): Hàm số lượng giác
  23. Bài giảng điện tử Phương trình lượng giác cơ bản | Kết nối tri thức Giáo án PPT Toán 11
  24. 20 Bài tập Phương trình lượng giác cơ bản (sách mới) có đáp án – Toán 11
  25. Lý thuyết Phương trình lượng giác cơ bản (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  26. Giáo án Toán 11 Bài 4 (Kết nối tri thức 2023): Phương trình lượng giác cơ bản
  27. Giải SGK Toán 11 Bài 4 (Kết nối tri thức): Phương trình lượng giác cơ bản
  28. Bài giảng điện tử Bài tập cuối chương 1 trang 40 | Kết nối tri thức Giáo án PPT Toán 11
  29. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 1 trang 25
  30. Lý thuyết Toán 11 Chương 1 (Kết nối tri thức 2023): Hàm số lượng giác và phương trình lượng giác hay, chi tiết
  31. Giáo án Toán 11 (Kết nối tri thức 2023) Bài tập cuối chương 1
  32. Giải SGK Toán 11 (Kết nối tri thức) Bài tập cuối chương 1 trang 40
  33. Bài giảng điện tử Dãy số | Kết nối tri thức Giáo án PPT Toán 11
  34. 20 Bài tập Dãy số (sách mới) có đáp án – Toán 11
  35. Giáo án Toán 11 Bài 5 (Kết nối tri thức 2023): Dãy số
  36. Lý thuyết Dãy số (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  37. Giải SGK Toán 11 Bài 5 (Kết nối tri thức): Dãy số
  38. Bài giảng điện tử Cấp số cộng | Kết nối tri thức Giáo án PPT Toán 11
  39. 20 Bài tập Cấp số cộng (sách mới) có đáp án – Toán 11
  40. Giáo án Toán 11 Bài 6 (Kết nối tri thức 2023): Cấp số cộng
  41. Lý thuyết Cấp số cộng (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  42. Giải SGK Toán 11 Bài 6 (Kết nối tri thức): Cấp số cộng
  43. Bài giảng điện tử Cấp số nhân | Kết nối tri thức Giáo án PPT Toán 11
  44. 20 Bài tập Cấp số nhân (sách mới) có đáp án – Toán 11
  45. Giáo án Toán 11 Bài 7 (Kết nối tri thức 2023): Cấp số nhân
  46. Lý thuyết Cấp số nhân (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  47. Giải SGK Toán 11 Bài 7 (Kết nối tri thức): Cấp số nhân
  48. Bài giảng điện tử Bài tập cuối chương 2 trang 56 | Kết nối tri thức Giáo án PPT Toán 11
  49. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 2 trang 40
  50. Giáo án Toán 11 (Kết nối tri thức 2023) Bài tập cuối chương 2
  51. Lý thuyết Toán 11 Chương 2 (Kết nối tri thức 2023): Dãy số. Cấp số cộng và cấp số nhân hay, chi tiết
  52. Giải SGK Toán 11 (Kết nối tri thức) Bài tập cuối chương 2 trang 56

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán