Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 7

Giải SGK Toán 7 Bài 1 (Cánh diều): Tập hợp Q các số hữu tỉ

By admin 22/10/2023 0

Giải bài tập Toán lớp 7 Bài 1: Tập hợp Q các số hữu tỉ

Video bài giảng Tập hợp Q các số hữu tỉ – Cánh diều

Giải Toán 7 trang 5 Tập 1

Câu hỏi khởi động trang 5 Toán lớp 7: Nhiệt độ lúc 13 giờ ngày 24/01/2016 tại một số trạm đo được bởi bảng như sau:

tên bài con + Tập 1 | Cánh diều (ảnh 1)

Phương pháp giải:

Viết số thập phân dưới dạng phân số có mẫu số là lũy thừa của 10 như đã học
Lời giải:

tên bài con + Tập 1 | Cánh diều (ảnh 2)

I. Số hữu tỉ

Hoạt động 1 trang 5 Toán lớp 7: Viết các số -3; 0,5; 237 dưới dạng phân số

Phương pháp giải:

Biểu diễn số nguyên a dưới dạng phân số a1

Số thập phân dưới dạng phân số có mẫu số là lũy thừa của 10.

Hỗn số dương abc=a.c+bc

Lời giải:

Ta có:

−3=−31;0,5=510=12;237=2.7+37=177

Giải Toán 7 trang 6 Tập 1

Luyện tập vận dụng 1 trang 6 Toán lớp 7: Các số 21; -12; −7−9; -4,7; -3,05 có là số hữu tỉ không? Vì sao?

Phương pháp giải:

Số hữu tỉ là số viết được dưới dạng phân số ab(a,b∈Z,b≠0).

Lời giải:

Các số 21; -12; −7−9; -4,7; -3,05 có là số hữu tỉ vì chúng đều viết được dưới dạng phân số21=211;−12=−121;−7−9=79;−4,7=−4710;−3,05=−305100=−6120

II. Biễu diễn số hữu tỉ trên trục số

Hoạt động 2 trang 6 Toán lớp 7: Biểu diễn số hữu tỉ 710 trên trục số

Phương pháp giải:

Chia đoạn thẳng đơn vị thành 10 phần bằng nhau. Lấy một đoạn làm đơn vị mới ( đơn vị mới bằng 110 đơn vị cũ)

Số hữu tỉ 710 được biểu diễn bằng điểm nằm bên phải gốc O, cách gốc O một đoạn bằng 7 đơn vị mới.

Lời giải:

tên bài con + Tập 1 | Cánh diều (ảnh 1)

Giải Toán 7 trang 7 Tập 1

Luyện tập 2 trang 7 Toán lớp 7: Biểu diễn số hữu tỉ − 0,3 trên trục số.

Lời giải:

Ta có: − 0,3=− 310.

Ta biểu diễn số hữu tỉ –310 trên trục số như sau:

• Chia đoạn thẳng đơn vị (chẳng hạn đoạn từ điểm −1 đến điểm 0) thành mười phần bằng nhau, lấy một đoạn làm đơn vị mới (đơn vị mới bằng 110 đơn vị cũ);

• Đi theo ngược chiều dương của trục số, bắt đầu từ điểm 0, ta lấy ra 3 đơn vị mới đến điểm M. Khi đó, điểm M biểu diễn số hữu tỉ –310.

Vậy điểm M biểu diễn số hữu tỉ − 0,3 (như hình vẽ).

Biểu diễn số hữu tỉ −0,3 trên trục số

III. Số đối của một số hữu tỉ

Hoạt động 3 trang 7, 8 Toán lớp 7: Quan sát hai điểm biểu diễn các số hữu tỉ –54 và 54 trên trục số sau (Hình 4):

Quan sát hai điểm biểu diễn các số hữu tỉ -5/4 và 5/4 trên trục số sau (Hình 4)

Nêu nhận xét về khoảng cách từ hai điểm –54 và 54 đến điểm gốc 0.

Lời giải:

Dựa vào hình vẽ trên, khoảng cách từ điểm –54 đến điểm gốc 0 là 54 và khoảng cách từ điểm –54 đến điểm gốc 0 là 54.

Vậy khoảng cách từ hai điểm –54 và 54 đến điểm gốc 0 bằng nhau. 

Giải Toán 7 trang 8 Tập 1

Luyện tập 3 trang 8 Toán lớp 7: Tìm số đối của mỗi số sau: 29; –0,5

Lời giải:

Số đối của 29 là –29.

Số đối của − 0,5 là − (−0,5) = 0,5.

IV. So sánh các số hữu tỉ

Giải Toán 7 trang 9 Tập 1

Hoạt động 4 trang 9 Toán lớp 7: So sánh:

a) –13 và –25;

b) 0,125 và 0,13;

c) – 0,6 và –23.

Lời giải:

a) Ta có –13=–13.

Các số −13 và −25 là các phân số có mẫu số dương. 

Thực hiện quy đồng mẫu các phân số, ta được:

 − 13=(− 1) . 53 . 5=− 515; − 25=(− 2) . 35 . 3=− 615 .

Vì − 5 > − 6 nên −  515>−  615 hay −  13>− 25.

Vậy −  13>− 25.

b) Cách 1: Hai số 0,125 và 0,13 đều có phần số nguyên là 0.

Ta so sánh chữ số phần thập phân của hai số:

– Chữ số hàng phần mười của hai số đều là 1.

– Chữ số hàng phần trăm của số 0,125 là 2 và của số 0,13 là 3. 

Vì 2 < 3 nên 0,125 < 0,13.

Vậy 0,125 < 0,13.

Cách 2: Viết các số 0,125 và 0,13 dưới dạng các phân số có mẫu số dương rồi rút gọn, ta được:

 0,125=1251000=18; 0,13=13100.

Ta thực hiện quy đồng mẫu các phân số đó như sau:

18=1 . 258 . 25=25200; 13100=13 . 2100 . 2=26200.

Vì 25 < 26 nên 25100<26100 hay 18<13100.

Vậy 0,125 < 0,13.

c) – 0,6 và − 23.

Ta có − 0,6=−  610=− 35.

Thực hiện quy đồng mẫu số hai phân số, ta được:

 − 35=(− 3) . 35 . 3=− 915; − 23=(− 2) . 53 . 5=− 1015.

Vì – 9 > – 10 nên − 915>− 1015 hay −  0,6>− 23.

Vậy −  0,6>− 23.

Luyện tập 4 trang 9 Toán lớp 7: So sánh:

a) – 3,23 và – 3,32;

b) –73 và – 1,25.

Lời giải:

a) Cách 1: Số đối của – 3,23 và – 3,32 lần lượt là 3,23 và 3,32.

Hai số 3,23 và 3,32 đều có phần nguyên là 3.

Ta so sánh phần thập phân: Chữ số hàng phần mười của số 3,23 và 3,32 lần lượt là 2 và 3.

Vì 2 < 3 nên 3,23 < 3,32 do đó – 3,23 > – 3,32.

Vậy – 3,23 > – 3,32.

Cách 2: Viết các số – 3,23 và – 3,32 dưới dạng các phân số có mẫu số dương rồi rút gọn, ta được:

 − 3,23=− 323100; − 3,32=− 332100.

Vì – 323 > – 332 nên − 323100>− 332100 hay – 3,23 > – 3,32.

Vậy – 3,23 > – 3,32.

b) Ta có: –1,25=−125100=−125:25100:25=−54; −73=−73

Ta đi quy đồng mẫu số hai phân số trên:

−54=−5.34.3=−1512;−73=−7.43.4=−2812

Vì –15 > –28 nên −1512>−2812

Do đó, −54>−73 hay –1,25 >–73

Vậy –1,25 >–73.

Hoạt động 5 trang 9, 10 Toán lớp 7: Giả sử hai điểm a, b lần lượt biểu diễn hai số nguyên a, b trên trục số nằm ngang. Với a < b, nêu nhận xét về vị trí của điểm a so với điểm b trên trục số đó.

Lời giải:

Hai điểm a, b lần lượt biểu diễn hai số nguyên a, b trên trục số nằm ngang.

Xét a < b.

+) Với a < 0, b < 0 và a < b.

Ta có hình vẽ minh họa như sau:

 Giả sử hai điểm a, b lần lượt biểu diễn hai số nguyên a, b trên trục số nằm ngang

Khi đó, điểm a nằm bên trái điểm b.

+) Với a < 0, b > 0 và a < b.

Ta có hình vẽ minh họa như sau:

Giả sử hai điểm a, b lần lượt biểu diễn hai số nguyên a, b trên trục số nằm ngang

Khi đó, điểm a nằm bên trái điểm b.

+) Với a > 0, b > 0 và a < b.

Ta có hình vẽ minh họa như sau:

Giả sử hai điểm a, b lần lượt biểu diễn hai số nguyên a, b trên trục số nằm ngang

Khi đó, điểm a nằm bên trái điểm b.

Vậy với a < b thì điểm a nằm bên trái điểm b.

Bài tập (trang 10, 11)

Giải Toán 7 trang 10 Tập 1

Bài 1 trang 10 Toán lớp 7: Các số 13; − 29; − 2,1; 2,28; − 12− 18 có là số hữu tỉ không? Vì sao?

Lời giải:

Ta có 13=131; − 29=− 291; − 2,1=− 2110; 2,28=228100.

Vì các số 131;  − 291;  − 2110;  228100;  − 12− 18 có dạng ab, với a,  b∈ℤ, b ≠ 0.

Nên các số 131;  − 291;  − 2110;  228100;  − 12− 18 là số hữu tỉ.

Vậy các số 13; − 29; − 2,1; 2,28; − 12− 18 là số hữu tỉ.

Bài 2 trang 10 Toán lớp 7: Chọn kí hiệu “∈”, “∉” thích hợp cho    ?   

a) 21    ?    ℚ;

b)  − 7    ?    ℕ;

c)  5− 7    ?    ℤ;

d)  0    ?    ℚ;

e)  − 7,3    ?    ℚ;

g)  329    ?    ℚ.

Lời giải:

a) Ta có 21=211.

Vì 21 viết được dưới dạng 211, với 21;  1∈ℤ,  1≠0 nên 21 là số hữu tỉ.

Vậy 21    ∈    ℚ.

b) Ta có −7 là số nguyên âm chứ không phải là số tự nhiên.

Vậy − 7    ∉    ℕ.

c) Ta có 5− 7 không phải là số nguyên.

Vậy 5− 7    ∉    ℤ.

d) Ta có 0=01 .

Vì 0 viết được dưới dạng 01, với 0;  1∈ℤ,  1≠0 nên 0 là số hữu tỉ.

Vậy 0    ∈    ℚ.

e) Ta có −7,3=−7310.

Vì −7,3 viết được dưới dạng –7310, với −73;  10∈ℤ,  10≠0 nên −7,3 là số hữu tỉ.

Vậy −7,3    ∈    ℚ.

g) Ta có 329=3 . 9+29=299.

Vì 329 viết được dưới dạng 299, với 29;  9∈ℤ,  9≠0 nên 329 là số hữu tỉ.

Vậy 329    ∈    ℚ.

Bài 3 trang 10 Toán lớp 7: Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

a) Nếu a ∈ ℕ thì a ∈ ℚ

b) Nếu a ∈ ℤ thì a ∈ ℚ

c) Nếu a ∈ ℚ thì a ∈ ℕ

d) Nếu a ∈ ℚ thì a ∈ ℤ

e) Nếu a ∈ ℕ thì a ∉ ℚ

g) Nếu a ∈ ℤ thì a ∉ ℚ

Lời giải:

a) Mọi số tự nhiên a bất kỳ đều biểu diễn được dưới dạng phân số a1.

Khi đó, nếu a là số tự nhiên thì a cũng là số hữu tỉ.

Do đó phát biểu “Nếu a∈ℕ thì a∈ℚ” là đúng.

b) Mọi số nguyên a bất kỳ đều biểu diễn được dưới dạng phân số a1.

Khi đó, nếu a là số nguyên thì a cũng là số hữu tỉ.

Do đó phát biểu “Nếu a∈ℤ thì a∈ℚ” là đúng.

c) Nếu a là số hữu tỉ thì a có thể là số tự nhiên. 

Ví dụ: 2 vừa là số hữu tỉ vừa là số tự nhiên.

Nếu a là số hữu tỉ thì a có thể không phải là số tự nhiên. 

Ví dụ: 12 là số hữu tỉ nhưng không phải là số tự nhiên.

Khi đó, nếu a là số hữu tỉ thì a chưa chắc là số tự nhiên.

Do đó phát biểu “Nếu a∈ℚ thì a∈ℕ” là sai.

d) Nếu a là số hữu tỉ thì a có thể là số nguyên. 

Ví dụ: −5 vừa là số hữu tỉ vừa là số nguyên.

Nếu a là số hữu tỉ thì a có thể không phải là số nguyên. 

Ví dụ: 25 là số hữu tỉ nhưng không phải là số nguyên.

Khi đó, nếu a là số hữu tỉ thì a chưa chắc là số nguyên.

Do đó phát biểu “Nếu a∈ℚ thì a∈ℤ” là sai.

e) Mọi số tự nhiên a bất kỳ đều biểu diễn được dưới dạng phân số a1.

Khi đó, nếu a là số tự nhiên thì a cũng là số hữu tỉ.

Do đó phát biểu “Nếu a∈ℕ thì a∉ℚ” là sai.

g) Mọi số nguyên a bất kỳ đều biểu diễn được dưới dạng phân số a1.

Khi đó, nếu a là số nguyên thì a cũng là số hữu tỉ.

Do đó phát biểu “Nếu a∈ℤ thì a∉ℚ” là sai.

Vậy các phát biểu đúng là: a, b và các phát biểu sai là: c, d, e, g.

Giải Toán 7 trang 11 Tập 1

Bài 4 trang 11 Toán lớp 7: Quan sát trục số sau và cho biết các điểm A, B, C, D biểu diễn những số nào:

 Quan sát trục số sau và cho biết các điểm A, B, C, D biểu diễn những số nào

Lời giải:

Mỗi đoạn thẳng đơn vị được chia thành 7 phần bằng nhau, lấy một đoạn làm đơn vị mới (đơn vị mới bằng 17 đơn vị cũ).

* Đi theo ngược chiều dương với trục số, bắt đầu từ điểm 0:

– Điểm A chiếm 9 phần nên điểm A biểu diễn số − 97 .

– Điểm B chiếm 3 phần nên điểm B biểu diễn số − 37.

* Đi theo chiều dương của trục số, bắt đầu từ điểm 0:

– Điểm C chiếm 2 phần nên điểm C biểu diễn số 27.

– Điểm D chiếm 6 phần nên điểm D biểu diễn số 67.

Vậy các điểm A, B, C, D lần lượt biểu diễn các số − 97;  − 37;  27;  67.

Bài 5 trang 11 Toán lớp 7: Tìm số đối của mỗi số sau: 925;  − 827;  − 1531;  5− 6;  3,9;  − 12,5.

Lời giải:

Số đối của 925 là –925;

Số đối của –827 là −− 827=−− 827=827;

Số đối của − 1531 là − − 1531=1531;

Số đối của 5− 6 là − 5− 6=−−56=56;

Số đối của 3,9 là −3,9.

Số đối của −12,5 là − (−12,5) = 12,5.

Bài 6 trang 11 Toán lớp 7: Biểu diễn số đối của mỗi số cho trên trục số sau:

 Biểu diễn số đối của mỗi số cho trên trục số sau

Lời giải:

Số đối của  − 56 là −− 56=56;

Số đối của −  13 là −  −  13=13;

Số đối của 0 là 0;

Số đối của 1 là − 1; 

Số đối của 76 là –76.

Biểu diễn các số 56;  13;  0;  −1;  − 76 trên trục số như sau:

Biểu diễn số đối của mỗi số cho trên trục số sau

Bài 7 trang 11 Toán lớp 7: So sánh:

a) 2,4 và 235;

b) − 0,12 và − 25;

c) −  27 và − 0,3.

Lời giải:

a) Ta có: 2,4=2410=24:210:2=125;

 235=2 . 5+35=135.

Vì 12 < 13 nên 125<135  hay 2,4<235.

Vậy 2,4<235.

b) Ta có − 0,12=− 12100=(−  12):4100:4=− 325; 

 − 25=− 25=(− 2) . 55 . 5=− 1025.

Vì − 3 > − 10 nên −  325>−  1025 hay −  0,12>−  25.

Vậy −  0,12>−  25.

c) Ta có −  0,3=−  310.

Thực hiện quy đồng hai phân số, ta được:

 − 27=(− 2) . 107 . 10=− 2070; − 310=(− 3) . 710 . 7=− 2170.

Vì − 20 > − 21 nên − 2070>− 2170 hay − 27>−  0,3.

Vậy − 27>−  0,3.

Bài 8 trang 11 Toán lớp 7: a) Sắp xếp các số sau theo thứ tự tăng dần: − 37;  0,4;  −  0,5;  27.

b) Sắp xếp các số sau theo thứ tự giảm dần: − 56;  −  0,75;  − 4,5;  − 1.

Lời giải:

a) Ta có 0,4=410; −  0,5=− 510.

Thực hiện quy đồng các phân số, ta được:

− 37=(− 3) . 107 . 10=− 3070; 410=4 . 710 . 7=2870;

− 510=(− 5) . 710 . 7=− 3570;27=2 . 107 . 10=2070.

Vì – 35 < – 30 < 20 < 28 nên − 3570<− 3070<2070<2870.

Hay − 510  <  − 37  <   27<  410.

Do đó − 0,5  <  − 37  <   27<  0,4.

Vậy các số sau theo thứ tự tăng dần là −  0,5 ;  − 37 ;   27  ;  0,4.

b) Ta có −  0,75=− 75100=− 34; − 4,5=− 4510=− 92; − 1=−  11.

Thực hiện quy đồng các phân số, ta được:

− 56=(− 5) . 26 . 2=−  1012; − 34=(− 3) . 34 . 3=− 912;

− 92=(− 9) . 62 . 6=− 5412; − 11=(−  1) . 121  .  12=− 1212.

Vì − 9 > − 10 > − 12 > − 54 nên − 912>− 1012>− 1212>− 5412.

Hay −  34>−  56>− 1>−  92.

Do đó –0,75>–56>–1>–4,5

Vậy các số được sắp xếp theo thứ tự giảm dần: –0,75;–56;–1;–4,5

Bài 9 trang 11 Toán lớp 7: Bạn Linh đang cân khối lượng của mình (Hình 6), ở đó các vạch ghi 46 và 48 lần lượt ứng với các số đo 46 kg và 48 kg. Khi nhìn vị trí mà chiếc kim chỉ vào, bạn Minh đọc số đo là 47,15 kg, bạn Dương đọc số đo là 47,3 kg, bạn Quân đọc số đo là 47,65 kg. Bạn nào đã đọc đúng số đo? Vì sao?

Bạn Linh đang cân khối lượng của mình Hình 6, ở đó các vạch ghi 46 và 48

Lời giải:

Từ vạch ghi 46 đến vạch ghi 48 lần lượt ứng với các số đo 46 kg và 48 kg thì vạch đậm chính giữa hai vạch này chỉ số đo 47 kg.

Từ vạch chỉ số đo 47 kg đến vạch chỉ số đo 48 kg được chia thành 10 đoạn nhỏ nên mỗi đoạn tương ứng với 0,1 kg.

Do đó, chiếc cân chỉ 47,3 kg.

Vậy bạn Dương đã đọc đúng số đo.

Bài 10 trang 11 Toán lớp 7: Cô Hạnh dự định xây tầng hầm cho ngôi nhà của gia đình. Một công ty tư vấn xây dựng đã cung cấp cho cô Hạnh lựa chọn một trong sáu số đo chiều cao của tầng hầm như sau: 2,3 m; 2,35 m; 2,4 m; 2,55 m; 2,5 m; 2,75 m. Cô Hạnh dự định chọn chiều cao của tầng hầm lớn hơn 135m để đảm bảo ánh sáng, thoáng đãng, cân đối về kiến trúc và thuận tiện trong sử dụng. Em hãy giúp cô Hạnh chọn đúng số đo chiều cao của tầng hầm.

Cô Hạnh dự định xây tầng hầm cho ngôi nhà của gia đình. Một công ty tư vấn xây dựng đã cung cấp cho cô Hạnh lựa chọn

Lời giải:

Ta có 135=2,6.

Cô Hạnh dự định chọn chiều cao của tầng hầm lớn hơn 135m hay chiều cao lớn hơn 2,6 m.

Mà trong sáu lựa chọn mà công ty tư vấn xây dựng đã đưa ra cho cô Hạnh thì chỉ có chiều cao 2,75 m lớn hơn 2,6 m.

Vậy số đo chiều cao của tầng hầm cô Hạnh cần chọn là 2,75 m.

Xem thêm các bài giải SGK Toán lớp 7 Cánh diều hay, chi tiết:

Bài 2: Cộng, trừ, nhân, chia số hữu tỉ

Bài 3: Phép tính lũy thừa với số mũ tự nhiên của một số hữu tỉ

Bài 4: Thứ tự thực hiện các phép tính. Quy tắc dấu ngoặc

Bài 5: Biểu diễn thập phân của một số hữu tỉ

Tags : Tags Giải bài tập   Tập hợp Q các số hữu tỉ   toán 7
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giải SGK Toán lớp 2 Tập 1 trang 53, 54, 55 Bài 14: Luyện tập chung | Kết nối tri thức

Next post

Giải SGK Toán 8 Ôn tập chương 4 Đại số

Bài liên quan:

20 câu Trắc nghiệm Tập hợp các số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7

Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

20 Bài tập Tập hợp các số hữu tỉ có đáp án – Toán 7

Giải sgk tất cả các môn lớp 7 Kết nối tri thức | Giải sgk các môn lớp 7 chương trình mới

Trọn bộ Trắc nghiệm Toán 7 Kết nối tri thức có đáp án

Giải sgk Toán 7 (cả 3 bộ sách) | Giải bài tập Toán 7 (hay, chi tiết)

Bài giảng điện tử Tập hợp các số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7

Bài giảng điện tử Toán 7 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 7

Leave a Comment Hủy

Mục lục

  1. 20 câu Trắc nghiệm Tập hợp các số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  2. Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  3. 20 Bài tập Tập hợp các số hữu tỉ có đáp án – Toán 7
  4. Giải sgk tất cả các môn lớp 7 Kết nối tri thức | Giải sgk các môn lớp 7 chương trình mới
  5. Trọn bộ Trắc nghiệm Toán 7 Kết nối tri thức có đáp án
  6. Giải sgk Toán 7 (cả 3 bộ sách) | Giải bài tập Toán 7 (hay, chi tiết)
  7. Bài giảng điện tử Tập hợp các số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7
  8. Bài giảng điện tử Toán 7 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 7
  9. Giáo án Toán 7 Bài 1 (Kết nối tri thức 2023): Tập hợp các số hữu tỉ
  10. Giáo án Toán 7 Kết nối tri thức (cả năm) mới nhất 2023
  11. Vở thực hành Toán 7 Kết nối tri thức | Giải VTH Toán 7 Tập 1, Tập 2 hay, chi tiết
  12. Vở thực hành Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  13. Lý thuyết Toán lớp 7 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 7 | Kết nối tri thức
  14. Sách bài tập Toán 7 Kết nối tri thức | SBT Toán 7 | Giải SBT Toán 7 | Giải sách bài tập Toán 7 hay nhất | Giải SBT Toán 7 Tập 1, Tập 2 | Giải SBT Toán lớp 7 Kết nối tri thức | SBT Toán 7 KNTT
  15. Giải sgk Toán 7 Kết nối tri thức | Giải Toán 7 | Giải Toán lớp 7 | Giải bài tập Toán 7 hay nhất | Giải Toán 7 Tập 1, Tập 2 Kết nối tri thức
  16. Sách bài tập Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  17. Giải SGK Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  18. 20 câu Trắc nghiệm Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  19. Lý thuyết Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  20. 21 Bài tập Cộng, trừ, nhân, chia số hữu tỉ có đáp án – Toán 7
  21. Bài giảng điện tử Cộng, trừ, nhân, chia số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7
  22. Giáo án Toán 7 Bài 2 (Kết nối tri thức 2023): Cộng, trừ, nhân, chia số hữu tỉ
  23. Vở thực hành Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  24. Sách bài tập Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  25. Giải SGK Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  26. Giáo án Toán 7 (Kết nối tri thức 2023): Luyện tập chung trang 14
  27. Vở thực hành Toán 7 (Kết nối tri thức): Luyện tập chung trang 11, 12, 13
  28. Giải SGK Toán 7 (Kết nối tri thức): Luyện tập chung trang 14
  29. 20 câu Trắc nghiệm Lũy thừa với số mũ tự nhiên của 1 số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  30. Lý thuyết Lũy thừa với số mũ tự nhiên của một số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  31. Vở thực hành Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ
  32. 20 Bài tập Lũy thừa với số mũ tự nhiên của một số hữu tỉ có đáp án – Toán 7
  33. Sách bài tập Toán 7 Bài 3 (Kết nối tri thức): Luỹ thừa với số mũ tự nhiên của một số hữu tỉ
  34. Giải SGK Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ
  35. 22 câu Trắc nghiệm Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  36. Lý thuyết Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  37. Bài giảng điện tử Thứ tự thực hiện các phép tính. Quy tắc chuyển vế | Kết nối tri thức Giáo án PPT Toán 7
  38. Giáo án Toán 7 Bài 4 (Kết nối tri thức 2023): Thứ tự thực hiện các phép tính. quy tắc chuyển vế
  39. Vở thực hành Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện phép tính. Quy tắc chuyển vế
  40. 20 Bài tập Thứ tự thực hiện các phép tính. Quy tắc chuyển vế có đáp án – Toán 7
  41. Sách bài tập Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  42. Giải SGK Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  43. Giáo án Toán 7 (Kết nối tri thức 2023): Luyện tập chung trang 23
  44. Vở thực hành Toán 7 (Kết nối tri thức): Luyện tập chung trang 19, 20, 21
  45. Toán lớp 7 (Kết nối tri thức) Luyện tập chung trang 23
  46. 32 câu Trắc nghiệm Toán lớp 7 Chương 1 (Kết nối tri thức) có đáp án: Số hữu tỉ
  47. Lý thuyết Toán 7 Chương 1 (Kết nối tri thức 2023): Số hữu tỉ hay, chi tiết
  48. Giáo án Toán 7 (Kết nối tri thức 2023): Bài tập cuối chương 1
  49. Vở thực hành Toán 7 (Kết nối tri thức): Bài ôn tập cuối chương 1
  50. 24 Bài tập Toán 7 Chương 1 có đáp án: Số hữu tỉ
  51. Sách bài tập Toán 7 (Kết nối tri thức): Ôn tập chương 1 trang 20, 21
  52. Giải SGK Toán 7 (Kết nối tri thức): Bài tập cuối chương 1

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán