Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 7

Sách bài tập Toán 7 Bài 2 (Cánh diều): Đa thức một biến. Nghiệm của đa thức một biến 

By admin 23/10/2023 0

Giải SBT Toán lớp 7 Bài 2: Đa thức một biến. Nghiệm của đa thức một biến

Giải SBT Toán 7 trang 42 Tập 2

Bài 17 trang 42 sách bài tập Toán lớp 7 Tập 2: Lực F (N) của gió khi thổi vuông góc vào cánh buồm tỉ lệ thuận với bình phương vận tốc v (m/s) của gió, ta có công thức F = 30v2.

a) Tính lực F khi v = 15; v = 20.

b) Biết cánh buồm chỉ có thể chịu được áp lực tối đa là 12 000 N, hỏi con thuyền có thể đi được trong gió bão với vận tốc gió 90 km/h hay không?

Lời giải:

a) Khi v = 15 thay vào công thức F = 30v2 ta có:

F = 30 . 152 = 30 . 225 = 6 750 (N).

Khi v = 20 thay vào công thức F = 30v2 ta có:

F = 30 . 202 = 12 000 (N).

Vậy lực F khi v = 15; v = 20 lần lượt là 6 750 N và 12 000 N.

b) Đổi 90 km/h = 90.10001.3600 = 25 m/s.

Khi v = 25 thay vào công thức F = 30v2 ta có:

F = 30 . 252 = 18 750 (N).

Do 18 750 > 12 000 nên con thuyền không đi được trong gió bão với vận tốc 25 m/s.

Vậy con thuyền không đi được trong gió bão với vận tốc 90 km/h.

Bài 18 trang 42 sách bài tập Toán lớp 7 Tập 2: Dung tích phổi của mỗi người phụ thuộc vào một số yếu tố, trong đó có hai yếu tố quan trọng là chiều cao và độ tuổi. Các nhà khoa học đã đưa ra công thức ước tính dung tích chuẩn phổi của mỗi người theo giới tính như sau:

Nam: P = 0,057h – 0,022a – 4,23;

Nữ: Q = 0,041h – 0,018a – 2,69.

Trong đó: h là chiều cao tính bằng xăng-ti-mét; a là tuổi tính bằng năm; P và Q là dung tích chuẩn của phổi tính bằng lít.

(Nguồn: Toán 7, NXB Giáo dục Việt Nam, năm 2020)

a) Theo công thức trên, nếu bạn Chi (nữ) 13 tuổi, cao 150 cm và bạn Hùng (nam) 13 tuổi, cao 160 cm thì dung tích chuẩn phổi của mỗi bạn là bao nhiêu?

b) Em hãy tính dung tích chuẩn phổi của mình theo công thức trên.

Lời giải:

a) Dung tích chuẩn phổi của bạn Chi (nữ) 13 tuổi, cao 150 cm là:

Q = 0,041 . 150 – 0,018 . 13 – 2,69 = 3,226 (l).

Dung tích chuẩn phổi của bạn Hùng (nam) 13 tuổi, cao 160 cm là:

P = 0,057 . 160 – 0,022 . 13 – 4,23 = 4,604 (l).

b) Học sinh thực hiện tương tự như phần a)

Giải SBT Toán 7 trang 43 Tập 2

Bài 19 trang 43 sách bài tập Toán lớp 7 Tập 2: Cho đa thức R(x) = x2 + 5x4 – 3x3 + x2 + 4x4 + 3x3 – x + 5.

a) Thu gọn và sắp xếp đa thức R(x) theo số mũ giảm dần của biến.

b) Tìm bậc của đa thức R(x).

c) Tìm hệ số cao nhất và hệ số tự do của đa thức R(x)..

d) Tính R(‒1), R(0), R(1), R(‒a) (với a là một số).

Lời giải:

a) Ta có:

R(x) = x2 + 5x4 – 3x3 + x2 + 4x4 + 3x3 – x + 5

= (5x4 + 4x4) + (– 3x3 + 3x3) + (x2 + x2) – x + 5

= 9x4 + 2x2 – x + 5.

Vậy thu gọn và sắp xếp đa thức R(x) theo số mũ giảm dần của biến ta được R(x) = 9x4 + 2x2 – x + 5.

b) Đa thức R(x) = 9x4 + 2x2 – x + 5 có bậc là 4 (do số mũ cao nhất của biến x trong đa thức là 4).

c) Đa thức R(x) = 9x4 + 2x2 – x + 5 có hệ số cao nhất là 9 và hệ số tự do là 5.

d) Ta có:

• R(‒1) = 9 . (‒1)4 + 2 . (‒1)2 – (‒1) + 5

= 9 . 1 + 2 . 1 + 1 + 5 = 17.

• R(0) = 9 . 04 + 2 . 02 – 0 + 5 = 5.

• R(1) = 9 . 14 + 2 . 12 – 1 + 5 = 15.

• R(‒a) = 9 . (‒a)4 + 2 . (‒a)2 – (‒a) + 5

= 9a4 + 2a2 + a + 5.

Vậy R(‒1) = 17; R(0) = 5; R(1) = 15 và R(‒a) = 9a4 + 2a2 + a + 5.

Bài 20 trang 43 sách bài tập Toán lớp 7 Tập 2: Cho đa thức P(x) = 4x4 + 2x3 – x4 – x2.

a) Tìm bậc, hệ số cao nhất, hệ số tự do của đa thức P(x).

b) Mỗi phần tử của tập hợp −1;12 có là nghiệm của đa thức P(x) không? Vì sao?

Lời giải:

a) Ta có:

P(x) = 4x4 + 2x3 – x4 – x2

= (4x4 – x4) + 2x3 – x2

= 3x4 + 2x3 – x2

Đa thức P(x) có bậc là 4, hệ số cao nhất là 3 và hệ số tự do là 0.

b)

• Thay x = ‒1 vào P(x) = 3x4 + 2x3 – x2 ta được:

P(‒1) = 3 . (‒1)4 + 2 . (‒1)3 – (‒1)2

= 3 . 1 + 2 . (‒1) – 1

= 0.

Do đó x = ‒1 là nghiệm của đa thức P(x).

• Thay x = 12 vào P(x) = 3x4 + 2x3 – x2 ta được:

P12=3.124+2.123−122

=3.116+2.18−14

=316.

Vì 316 ≠ 0 nên x = 12 không là nghiệm của đa thức P(x).

Vậy phần tử ‒1 của −1;12 là nghiệm của đa thức P(x).

Bài 21 trang 43 sách bài tập Toán lớp 7 Tập 2: Tìm bậc của mỗi đa thức sau:

a) 2 – 3x2 + 5x4 – x – x2 – 5x4 + 3x3;

b) 2x3 – 6x7;

c) 1 – x;

d) – 3;

e) 0.

Lời giải:

a) Ta có:

2 – 3x2 + 5x4 – x – x2 – 5x4 + 3x3

= (5x4 – 5x4) + 3x3 + (– 3x2 – x2) – x + 2

= 3x3 – 4x2 – x + 2.

Đa thức trên có bậc là 3 do số mũ cao nhất của biến x là 3.

b) Đa thức 2x3 – 6x7 có bậc là 7 do số mũ cao nhất của biến x là 7.

c) Đa thức 1 – x có bậc là 1 do số mũ cao nhất của biến x là 1.

d) Đa thức – 3 có bậc là 0 do số mũ cao nhất của biến x là 0.

e) Đa thức 0 không có bậc.

Bài 22 trang 43 sách bài tập Toán lớp 7 Tập 2: Kiểm tra xem:

a) x = 12, x = –12 có là nghiệm của đa thức P(x) = 2x – 1 hay không;

b) x = 2, x = –12 có là nghiệm của đa thức Q(x) = –3x + 6 hay không;

c) t = 0, t = 2 có là nghiệm của đa thức R(t) = t2 + 2t hay không;

d) t = 0, t = 1, t = –1 có là nghiệm của đa thức H(t) = t3 – t hay không.

Lời giải:

a) Xét đa thức P(x) = 2x – 1.

• Thay x = 12 vào P(x) ta được:

P12=2.12−1=0.

Do đó x = 12 là nghiệm của đa thức P(x) = 2x – 1.

• Thay x = −12 vào P(x) ta được:

P−12=2.−12−1=−2≠0.

Do đó x = −12 không là nghiệm của đa thức P(x) = 2x – 1.

Vậy x = 12 là nghiệm; x = −12 không là nghiệm của đa thức P(x) = 2x – 1.

b) Xét đa thức Q(x) = –3x + 6.

• Thay x = 2 vào đa thức Q(x) ta được:

Q(2) = –3 . 2 + 6 = 0.

Do đó x = 2 là nghiệm của đa thức Q(x) = –3x + 6.

• Thay x = −12 vào đa thức Q(x) ta được:

Q−12=−3.−12+6=152≠0.

Do đó x = −12 không là nghiệm của đa thức Q(x) = –3x + 6.

Vậy x = 2 là nghiệm; x = −12 không là nghiệm của đa thức Q(x) = –3x + 6.

c) Xét đa thức R(t) = t2 + 2t.

• Thay t = 0 vào đa thức R(t) ta được:

R(0) = 02 + 2 . 0 = 0.

Do đó t = 0 là nghiệm của đa thức R(t) = t2 + 2t.

• Thay t = 2 vào đa thức R(t) ta được:

R(2) = 22 + 2 . 2 = 8 ≠ 0.

Do đó t = 2 không là nghiệm của đa thức R(t) = t2 + 2t.

Vậy t = 0 là nghiệm; t = 2 không là nghiệm của đa thức R(t) = t2 + 2t.

d) Xét đa thức H(t) = t3 – t.

• Thay t = 0 vào đa thức H(t) ta được:

H(0) = 03 – 0 = 0.

Do đó t = 0 là nghiệm của đa thức H(t) = t3 – t.

• Thay t = 1 vào đa thức H(t) ta được:

H(1) = 13 – 1 = 0.

Do đó t = 1 là nghiệm của đa thức H(t) = t3 – t.

• Thay t = –1 vào đa thức H(t) ta được:

H(‒1) = (‒1)3 – (‒1) = 0.

Do đó t = ‒1 là nghiệm của đa thức H(t) = t3 – t.

Vậy t = 0, t = 1, t = –1 đều là nghiệm của đa thức H(t) = t3 – t.

Bài 23 trang 43 sách bài tập Toán lớp 7 Tập 2: Chứng tỏ các đa thức sau không có nghiệm:

a) x2 + 4;

b) 10x2 + 34;

c) (x – 1)2 + 7.

Lời giải:

a) Vì x2 ≥ 0 với mọi giá trị của x.

Nên x2 + 4 ≥ 4 với mọi giá trị của x.

Hay x2 + 4 > 0 với mọi giá trị của x.

Do đó đa thức x2 + 4 không có nghiệm với mọi giá trị của x.

Vậy đa thức x2 + 4 không có nghiệm.

b) Vì x2 ≥ 0 với mọi giá trị của x.

Nên 10x2 ≥ 0 với mọi giá trị của x.

Suy ra 10x2 + 34≥ 34 với mọi giá trị của x.

Hay 10x2 + 34 > 0 với mọi giá trị của x.

Do đó đa thức 10x2 + 34 không có nghiệm với mọi giá trị của x.

Vậy đa thức 10x2 + 34 không có nghiệm.

c) Vì (x – 1)2 ≥ 0 với mọi giá trị của x.

Nên (x – 1)2 + 7 ≥ 7 với mọi giá trị của x.

Hay (x – 1)2 + 7 > 0 với mọi giá trị của x.

Do đó đa thức (x – 1)2 + 7 không có nghiệm với mọi giá trị của x.

Vậy đa thức (x – 1)2 + 7 không có nghiệm.

Giải SBT Toán 7 trang 44 Tập 2

Bài 24 trang 44 sách bài tập Toán lớp 7 Tập 2: Đố?

Tác phẩm “TRUYỆN …” là một truyện thơ của đại thi hào Nguyễn Du. Tác phẩm đó được xem là một trong những truyện thơ nổi tiếng nhất và xét vào hàng kinh điển trong văn học Việt Nam, nó được viết theo thể thơ lục bát, gồm 3 254 câu.

Em sẽ biết từ còn thiếu của tên truyện thơ trên bằng cách thu gọn mỗi đa thức sau rồi viết các chữ tương ứng với kết quả tìm được vào các ô trống trong bảng dưới đây:

I. 3x3 + 13x3 – 12x3;

Ề. 2021x + (–2021x);

K. −15x4 – 12x4 + 17x4;

U. 6x2 + 16x2 – 15x2.

−3970x4

176x3

0

17930x2

       

Lời giải:

Ta thu gọn các đa thức:

I. 3x3 + 13x3 – 12x3 = 3+13−12x3 = 176x3;

Ề. 2021x + (–2021x) = (2021 – 2021)x = 0.

K. −15x4 – 12x4 + 17x4 = −15−12+17x4 = −3970x4;

U. 6x2 + 16x2 – 15x2 = 6+16−15x2 = 17930x2.

−3970x4

176x3

0

17930x2

K

I

Ề

U

Vậy truyện thơ đó là “TRUYỆN KIỀU”.

Xem thêm các bài giải SBT Toán lớp 7 Cánh diều hay, chi tiết khác:

SBT Toán 7 Bài 1 : Biểu thức số. Biểu thức đại số

SBT Toán 7 Bài 2 : Đa thức một biến. Nghiệm của đa thức một biến 

SBT Toán 7 Bài 3 : Phép cộng, phép trừ đa thức một biến

SBT Toán 7 Bài 4 : Phép nhân đa thức một biến

SBT Toán 7 Bài 5 : Phép chia đa thức một biến

Tags : Tags đa thức một biến   Giải sách bài tập   nghiệm của đa thức 1 biến   toán 7
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Bài tập cuối tuần Toán lớp 2 Kết nối tri thức Tuần 11

Next post

Giá trị nhỏ nhất và giá trị lớn nhất của biểu thức

Bài liên quan:

20 câu Trắc nghiệm Tập hợp các số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7

Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

20 Bài tập Tập hợp các số hữu tỉ có đáp án – Toán 7

Giải sgk tất cả các môn lớp 7 Kết nối tri thức | Giải sgk các môn lớp 7 chương trình mới

Trọn bộ Trắc nghiệm Toán 7 Kết nối tri thức có đáp án

Giải sgk Toán 7 (cả 3 bộ sách) | Giải bài tập Toán 7 (hay, chi tiết)

Bài giảng điện tử Tập hợp các số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7

Bài giảng điện tử Toán 7 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 7

Leave a Comment Hủy

Mục lục

  1. 20 câu Trắc nghiệm Tập hợp các số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  2. Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  3. 20 Bài tập Tập hợp các số hữu tỉ có đáp án – Toán 7
  4. Giải sgk tất cả các môn lớp 7 Kết nối tri thức | Giải sgk các môn lớp 7 chương trình mới
  5. Trọn bộ Trắc nghiệm Toán 7 Kết nối tri thức có đáp án
  6. Giải sgk Toán 7 (cả 3 bộ sách) | Giải bài tập Toán 7 (hay, chi tiết)
  7. Bài giảng điện tử Tập hợp các số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7
  8. Bài giảng điện tử Toán 7 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 7
  9. Giáo án Toán 7 Bài 1 (Kết nối tri thức 2023): Tập hợp các số hữu tỉ
  10. Giáo án Toán 7 Kết nối tri thức (cả năm) mới nhất 2023
  11. Vở thực hành Toán 7 Kết nối tri thức | Giải VTH Toán 7 Tập 1, Tập 2 hay, chi tiết
  12. Vở thực hành Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  13. Lý thuyết Toán lớp 7 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 7 | Kết nối tri thức
  14. Sách bài tập Toán 7 Kết nối tri thức | SBT Toán 7 | Giải SBT Toán 7 | Giải sách bài tập Toán 7 hay nhất | Giải SBT Toán 7 Tập 1, Tập 2 | Giải SBT Toán lớp 7 Kết nối tri thức | SBT Toán 7 KNTT
  15. Giải sgk Toán 7 Kết nối tri thức | Giải Toán 7 | Giải Toán lớp 7 | Giải bài tập Toán 7 hay nhất | Giải Toán 7 Tập 1, Tập 2 Kết nối tri thức
  16. Sách bài tập Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  17. Giải SGK Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  18. 20 câu Trắc nghiệm Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  19. Lý thuyết Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  20. 21 Bài tập Cộng, trừ, nhân, chia số hữu tỉ có đáp án – Toán 7
  21. Bài giảng điện tử Cộng, trừ, nhân, chia số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7
  22. Giáo án Toán 7 Bài 2 (Kết nối tri thức 2023): Cộng, trừ, nhân, chia số hữu tỉ
  23. Vở thực hành Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  24. Sách bài tập Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  25. Giải SGK Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  26. Giáo án Toán 7 (Kết nối tri thức 2023): Luyện tập chung trang 14
  27. Vở thực hành Toán 7 (Kết nối tri thức): Luyện tập chung trang 11, 12, 13
  28. Giải SGK Toán 7 (Kết nối tri thức): Luyện tập chung trang 14
  29. 20 câu Trắc nghiệm Lũy thừa với số mũ tự nhiên của 1 số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  30. Lý thuyết Lũy thừa với số mũ tự nhiên của một số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  31. Vở thực hành Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ
  32. 20 Bài tập Lũy thừa với số mũ tự nhiên của một số hữu tỉ có đáp án – Toán 7
  33. Sách bài tập Toán 7 Bài 3 (Kết nối tri thức): Luỹ thừa với số mũ tự nhiên của một số hữu tỉ
  34. Giải SGK Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ
  35. 22 câu Trắc nghiệm Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  36. Lý thuyết Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  37. Bài giảng điện tử Thứ tự thực hiện các phép tính. Quy tắc chuyển vế | Kết nối tri thức Giáo án PPT Toán 7
  38. Giáo án Toán 7 Bài 4 (Kết nối tri thức 2023): Thứ tự thực hiện các phép tính. quy tắc chuyển vế
  39. Vở thực hành Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện phép tính. Quy tắc chuyển vế
  40. 20 Bài tập Thứ tự thực hiện các phép tính. Quy tắc chuyển vế có đáp án – Toán 7
  41. Sách bài tập Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  42. Giải SGK Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  43. Giáo án Toán 7 (Kết nối tri thức 2023): Luyện tập chung trang 23
  44. Vở thực hành Toán 7 (Kết nối tri thức): Luyện tập chung trang 19, 20, 21
  45. Toán lớp 7 (Kết nối tri thức) Luyện tập chung trang 23
  46. 32 câu Trắc nghiệm Toán lớp 7 Chương 1 (Kết nối tri thức) có đáp án: Số hữu tỉ
  47. Lý thuyết Toán 7 Chương 1 (Kết nối tri thức 2023): Số hữu tỉ hay, chi tiết
  48. Giáo án Toán 7 (Kết nối tri thức 2023): Bài tập cuối chương 1
  49. Vở thực hành Toán 7 (Kết nối tri thức): Bài ôn tập cuối chương 1
  50. 24 Bài tập Toán 7 Chương 1 có đáp án: Số hữu tỉ
  51. Sách bài tập Toán 7 (Kết nối tri thức): Ôn tập chương 1 trang 20, 21
  52. Giải SGK Toán 7 (Kết nối tri thức): Bài tập cuối chương 1

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán