Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SGK Toán 6 – Cánh diều

Giải SGK Toán 6 Bài 13 (Cánh diều): Bội chung và bội chung nhỏ nhất

By admin 17/04/2023 0

Giải bài tập Toán 6 Bài 13: Bội chung và bội chung nhỏ nhất 

Video giải Toán 6 Bài 13: Bội chung và bội chung nhỏ nhất – Cánh diều

Trả lời câu hỏi giữa bài

Giải Toán 6 trang 53 Tập 1 Cánh diều

Câu hỏi khởi động trang 53 Toán lớp 6 Tập 1: Để chuẩn bị trò chơi trong chuyến đi dã ngoại, cô Ánh đi siêu thị mua bóng bàn và cốc sao cho số quả bóng bàn bằng số cốc. Tuy nhiên, tại siêu thị, bóng bàn chỉ bán theo hộp gồm 6 quả, cốc chỉ bán theo bộ gồm 8 chiếc.

Cô Ánh phải mua ít nhất bao nhiêu bộ cốc và bao nhiêu hộp bóng bàn?

Lời giải:

Sau khi học bài này, ta sẽ biết được số chiếc cốc và số quả bóng bàn mà cô Ánh phải mua ít nhất là bội chung nhỏ nhất của 6 và 8. 

Ta có: 6 = 2 . 3 và 8 = 23 

Các thừa số nguyên tố chung và riêng của 6 và 8 là 2 và 3

Số mũ lớn nhất của 2 là 3, số mũ lớn nhất của 3 là 1

Khi đó BCNN(6, 8) = 23 . 3 = 24

Do đó cô Ánh phải mua 24 chiếc cốc và 24 quả bóng bàn.

Số bộ cốc là: 24 : 8 = 3 (bộ)

Số hộp bóng bàn là: 24 : 6 = 4 (hộp)

Vậy cô Ánh cần mua ít nhất 3 bộ cốc và 4 hộp bóng bàn để số bóng bàn và số cốc bằng nhau.

Hoạt động 1 trang 53 Toán lớp 6 Tập 1: a) Nêu một số bội của 2 và của 3 theo thứ tự tăng dần:

a) Nêu một số bội của 2 và của 3 theo thứ tự tăng dần

b) Tìm các số vừa ở trong hàng thứ nhất vừa ở trong hàng thứ hai. 

c) Xác định số nhỏ nhất khác 0 trong các bội chung của 2 và 3.

Lời giải:

a)





Một số bội của 2

0

2

4

6

8

10

12

14

16

18

20 

Một số bội của 3

0

3

6

9

12

15

18

21

24

27

30

b) Các số vừa ở hàng thứ nhất vừa ở hàng thứ 2 là: 0, 6, 12, 18.

c) Số nhỏ nhất khác 0 trong bội chung của 2 và 3 là: 6.

Giải Toán 6 trang 54 Tập 1 Cánh diều

Luyện tập 1 trang 54 Toán lớp 6 Tập 1: Hãy nêu bốn bội chung của 5 và 9.

Lời giải:

+ Trước tiên ta tìm các bội của 5 và 9.

+ Để tìm bội của 5, ta lần lượt lấy 5 nhân với các số 0; 1; 2; 3;…

Một số bội của 5 là: 0; 5; 10; 15; 20; 25; 30; 35; 40; 45; 50; 55; 60; 65; 70; 75; 80; 85; 90; 95; 100; 105; 110; 115; 120; 125; 130; 135. 

+ Để tìm bội của 9, ta lần lượt lấy 9 nhân với các số 0; 1; 2; 3;…

Một số bội của 9 là: 0; 18; 27; 36; 45; 54; 63; 72; 81; 90; 99; 108; 117; 126; 135.

Do đó 4 bội chung của 5 và 9 là: 0; 45; 90; 135.

Hoạt động 2 trang 54 Toán lớp 6 Tập 1: Quan sát bảng sau:

Quan sát bảng sau: a) Viết ba bội chung của 8 và 12 theo thứ tự tăng dần

a) Viết ba bội chung của 8 và 12 theo thứ tự tăng dần.

b) Tìm BCNN(8, 12).

c) Thực hiện phép chia ba bội chung của 8 và 12 cho BCNN(8, 12).

Lời giải:

a) Quan sát bảng ta thấy các bội chung của 8 và 12 là: 0; 24; 48; 72.

Đề bài chỉ yêu cầu chúng ta đưa ra 3 bội chung của 8 và 12 nên ta chỉ cần chọn 3 trong 4 số trên và xếp chúng theo thứ tự tăng dần. 

Ví dụ: 24; 48; 72. 

b)  Trong các bội chung của 8 và 12 ở trên, ta thấy số 24 là số bé nhất và khác 0 nên BCNN(8, 12) = 24. 

c) Chia 3 bội chung của 8 và 12 cho BCNN(8, 12)

24 : 24 = 1

48 : 24 = 2

72 : 24 = 3.

Giải Toán 6 trang 55 Tập 1 Cánh diều

Luyện tập 2 trang 55 Toán lớp 6 Tập 1: Tìm tất cả các số có ba chữ số là bội chung của a và b, biết rằng BCNN(a, b) = 300.

Lời giải:

Vì bội chung của a và b đều là bội của BCNN(a, b) = 300 nên ta đi tìm các bội của 300. 

Ta có các bội của 300 là: 0; 300; 600; 900; 1 200; … (lấy 300 lần lượt nhân với 0, 1, 2, 3,…)

Vậy tất cả các số có ba chữ số là bội chung của a và b là: 300; 600; 900.

Hoạt động 3 trang 55 Toán lớp 6 Tập 1:

Lời giải:

Ta có thể tìm BCNN(6, 8) theo các bước sau:

Bước 1. Phân tích 6 và 8 ra thừa số nguyên tố

          6 = 2 . 3

          8 = 2 . 2 . 2 = 23

Bước 2. Chọn ra các thừa số nguyên tố chung và các thừa số nguyên tố riêng của 6 và 8 lần lượt là 2 và 3.

Bước 3. Với mỗi thừa số nguyên tố 2 và 3, ta chọn lũy thừa với số mũ lớn nhất

+) Số mũ lớn nhất của 2 là 3; ta chọn 23.

+) Số mũ lớn nhất của 3 là 1; ta chọn 31.

Bước 4. Lấy tích của các lũy thừa đã chọn, ta nhận được bội chung nhỏ nhất cần tìm BCNN(6, 8) = 23 . 31 = 24.

Giải Toán 6 trang 56 Tập 1 Cánh diều

Luyện tập 3 trang 56 Toán lớp 6 Tập 1: Tìm bội chung nhỏ nhất của 12, 18, 27.

Lời giải:

+ Ta phân tích các số 12, 18, 27 ra thừa số nguyên tố:

12 = 4 . 3 = 22 . 3 

18 = 2 . 9 = 2 . 32 

27 = 33 

+ Các thừa số nguyên tố chung và riêng của 12, 18 và 27 là 2 và 3.

Số mũ lớn nhất của 2 là 2, số mũ lớn nhất của 3 là 3 

Vậy BCNN(12, 18, 27) = 22 . 33 = 4 . 27 = 108.

Hoạt động 4 trang 56 Toán lớp 6 Tập 1: Thực hiện phép tính: Thực hiện phép tính: 5/12 + 7/18

Lời giải:

+) Ở tiểu học, ta đã làm như sau:

Quy đồng mẫu hai phân số bằng cách chọn mẫu chung là tích của hai mẫu:

Mẫu chung = 12 . 18 = 216

Ta có: Thực hiện phép tính: 5/12 + 7/18.

Vậy Thực hiện phép tính: 5/12 + 7/18.

+) Để tính tổng hai phân số trên, ta có thể làm như sau:

– Chọn mẫu chung là BCNN của các mẫu. Cụ thể: 

Mẫu chung = BCNN(12, 18) = 36

– Tìm thừa số phụ của mỗi mẫu (bằng cách chia mẫu chung cho từng mẫu), ta có:

36 : 12 = 3; 36 : 18 = 2

– Sau khi nhân tử và mẫu của mỗi phân số với thừa số phụ tương ứng, ta cộng hai phân số có cùng mẫu:

Thực hiện phép tính: 5/12 + 7/18

Giải Toán 6 trang 57 Tập 1 Cánh diều

Luyện tập 4 trang 57 Toán lớp 6 Tập 1: Thực hiện phép tính: Thực hiện phép tính: 11/15 - 3/25 + 9/10

Lời giải:

+ Để thực hiện phép tính, trước tiên ta đi tìm BCNN của 15, 25 và 10

Ta có: 15 = 3 . 5; 25 = 52 ; 10 = 2 . 5

Các thừa số nguyên tố chung và riêng của 15, 25, 10 là 2, 3 và 5; lần lượt tương ứng với các số mũ lớn nhất là 1; 1 và 2.

Khi đó: BCNN(15, 25, 10) = 2 . 3 . 52 = 6 . 25 = 150

+ Ta có: 150 : 15 = 10; 150 : 25 = 6; 150 : 10 = 15

+ Khi đó: Thực hiện phép tính: 11/15 - 3/25 + 9/10

Vậy Thực hiện phép tính: 11/15 - 3/25 + 9/10

Bài tập

Bài 1 trang 57 Toán lớp 6 Tập 1: a) Hãy viết các ước của 7 và các ước của 8. Tìm ƯCLN(7, 8).

b) Hai số 7 và 8 có nguyên tố cùng nhau hay không? Vì sao?

c) Tìm BCNN(7, 8). So sánh bội chung nhỏ nhất với tích hai số 7 và 8.

Lời giải:

a) + Để tìm các ước của 7 ta lấy 7 lần lượt chia cho các số tự nhiên từ 1 đến 7, các phép chia hết là: 7 : 1 = 7; 7 : 7 = 1

Do đó: các ước của 7 là: 1; 7 

+ Để tìm các ước của 8 ta lấy 8 lần lượt chia cho các số tự nhiên từ 1 đến 8, các phép chia hết là: 8 : 1 = 8; 8 : 2 = 4; 8 : 4 = 2; 8 : 8 = 1.

Các ước của 8 là: 1; 2; 4; 8.

+ Từ đó suy ra ƯC(7, 8) = 1 nên ƯCLN(7, 8) = 1.

b) Vì ƯCLN(7, 8) = 1 (theo câu a) nên hai số 7 và 8 là hai số nguyên tố cùng nhau. 

c) Ta có: 7 = 71; 8 = 23

Các thừa số nguyên tố chung và riêng là 7 và 2 với số mũ cao nhất lần lượt là 1 và 3.

Do đó BCNN(7, 8) = 71 . 23 = 56 

Mà 7 . 8 = 56

Hay ta nói bội chung nhỏ nhất của hai số nguyên tố cùng nhau 7 và 8 chính bằng tích của hai số 7 và 8.

Bài 2 trang 57 Toán lớp 6 Tập 1: Quan sát hai thanh sau:

Quan sát hai thanh sau: a) Số 0 có phải là bội chung của 6 và 10 không? Vì sao

a) Số 0 có phải là bội chung của 6 và 10 không? Vì sao?

b) Viết bốn bội chung của 6 và 10 theo thứ tự tăng dần.

c) Tìm BCNN(6, 10).

d) Tìm các bội chung của 6 và 10 mà nhỏ hơn 160.

Lời giải:

a) Quan sát hình trên, ta thấy số 0 nằm trên cả 2 thanh, thanh một số bội của 10 (thanh ngang) và thanh một số bội của 6 (thanh cong) nên số 0 là bội chung của 6 và 10. 

Mở rộng: Hơn nữa, 0 chia hết cho tất cả các số tự nhiên khác 0 nên 0 là bội của mọi số tự nhiên khác 0. 

b) Quan sát hình trên, ta thấy các số 0; 30; 60; 90 (được tô màu đậm hơn) nằm trên cả hai thanh ngang và thanh cong.

Do đó bốn bội chung của 6 và 10 được xếp theo thứ tự tăng dần là: 0; 30; 60; 90.

 c) Trong các bội chung trên của 6 và 10, ta thấy 30 là số bé nhất và khác 0.

Do đó nó là bội chung nhỏ nhất của 6 và 10 hay BCNN(6, 10) = 30.

d) Các bội chung của 6 và 10 là các bội của BCNN(6, 10) = 30. 

Mà các bội của 30 là: 0; 30; 60; 90; 120; 150; 180;…. (lần lượt nhân 30 với 0, 1, 2, …)

Vậy các bội chung của 6 và 10 nhỏ hơn 160 là: 0; 30; 60; 90; 120; 150.

Giải Toán 6 trang 58 Tập 1 Cánh diều

Bài 3 trang 58 Toán lớp 6 Tập 1: Tìm bội chung nhỏ nhất của:

a) 7 và 13;

b) 54 và 108;

c) 21, 30, 70.

Lời giải:

a) Ta có, 7 và 13 đều là các số nguyên tố 

Nên 7 và 13 cũng là hai số nguyên tố cùng nhau

Do đó: BCNN(7, 13) = 7 . 13 = 91. 

b) Ta có: 54 = 2 . 27 = 2 . 33 

108 = 4 . 27 = 22 . 33 

Các thừa số nguyên tố chung và riêng của 54 và 108 là 2 và 3, tương ứng với các số mũ lớn nhất lần lượt là 2 và 3

Khi đó: BCNN(54, 108) = 22 . 33 = 4 . 27 = 108.

c) Ta có: 21 = 3 . 7

30 = 3 . 10 = 3 . 2 . 5; 70 = 7. 10 = 7 . 2 . 5

Các thừa số nguyên tố chung và riêng của 21, 30, 70 là 2, 3, 5, 7; chúng đều có số mũ lớn nhất là 1.

Do đó: BCNN(21, 30, 70) = 2 . 3. 5 . 7 = 210.

Bài 4 trang 58 Toán lớp 6 Tập 1: Thực hiện phép tính sau:

Thực hiện phép tính sau: a) 19/48 - 3/40; b) 1/6 + 7/27 + 5/18

Lời giải:

a) Để thực hiện phép tính, trước hết tìm bội chung nhỏ nhất của 48 và 40 để quy đồng mẫu số.

+ Ta có: 48 = 16 . 3 = 24 . 3 

40 = 8 . 5 = 23 . 5 

Các thừa số nguyên tố chung và riêng của 48 và 40 là 2, 3, 5, tương ứng với các số mũ lớn nhất lần lượt là 4, 1, 1.

Khi đó: BCNN(48, 40) = 24 . 3 .5 = 16 . 3 . 5 = 240.

+ 240 : 48 = 5; 240 : 40 = 6 

+ Ta có: Thực hiện phép tính sau: a) 19/48 - 3/40; b) 1/6 + 7/27 + 5/18

Vậy Thực hiện phép tính sau: a) 19/48 - 3/40; b) 1/6 + 7/27 + 5/18

b) Để thực hiện phép tính, trước hết tìm bội chung nhỏ nhất của 6, 27 và 18 để quy đồng mẫu số.

+ Ta có: 6 = 2 . 3; 27 = 33; 18 = 2 . 9 = 2 . 32 

Các thừa số nguyên tố chung và riêng của 6, 27 và 18 là 2; 3, tương ứng với các số mũ lớn nhất là 1; 3. 

Khi đó: BCNN(6, 27, 18) = 21. 33 = 2 . 27 = 54

+ 54 : 6 = 9; 54 : 27 = 2; 54 : 18 = 3

+ Ta có: Thực hiện phép tính sau: a) 19/48 - 3/40; b) 1/6 + 7/27 + 5/18

Vậy Thực hiện phép tính sau: a) 19/48 - 3/40; b) 1/6 + 7/27 + 5/18

Bài 5 trang 58 Toán lớp 6 Tập 1: Bội chung nhỏ nhất của hai số là 45. Một trong hai số đó là 5. Hãy tìm số còn lại.

Lời giải:

Gọi số cần tìm là x

Ta có: BCNN(x, 5) = 45 

Mà 45 = 5 . 9 = 5 . 32 ; 5 = 51 và 5 là số nguyên tố nên x và 5 phải là hai số nguyên tố cùng nhau, mà bội chung nhỏ nhất của hai số nguyên tố cùng nhau chính bằng tích của hai số đó. 

Do đó x = 32 = 9.  

Vậy số cần tìm là 9.

Bài 6 trang 58 Toán lớp 6 Tập 1: Câu lạc bộ thể thao của một trường trung học cơ sở có không quá 50 học sinh tham gia. Biết rằng khi chia số học sinh trong câu lạc bộ đó thành từng nhóm 5 học sinh hoặc 8 học sinh thì vừa hết. Câu lạc bộ thể thao đó có bao nhiêu học sinh?

Lời giải:

Gọi a là số học sinh của câu lạc bộ thể thao (a ∈ Câu lạc bộ thể thao của một trường trung học cơ sở có không quá 50 học sinh tham gia, a ≤ 50)

Vì khi chia số học sinh trong câu lạc bộ đó thành từng nhóm 5 học sinh hoặc 8 học sinh thì vừa hết nên a là bội chung của 5 và 8. 

Ta có: 5 = 51; 8 = 23 

Do đó: BCNN(5, 8) = 51 . 23 = 5 . 8 = 40

Mà bội chung của 5 và 8 là các bội của BCNN(5, 8) = 40 

Nên BC(5, 8) ={0; 40; 80; 120; …}

Vì a ≤ 50 nên a = 40. 

Vậy câu lạc bộ thể thao đó có 40 học sinh.

Bài 7 trang 58 Toán lớp 6 Tập 1: Lịch cập cảng của ba tàu như sau: tàu thứ nhất cứ 10 ngày cập cảng một lần; tàu thứ hai cứ 12 ngày cập cảng một lần; tàu thứ ba cứ 15 ngày cập cảng một lần. Vào một ngày nào đó, ba tàu cùng cập cảng. Sau ít nhất bao nhiêu ngày thì ba tàu lại cùng cập cảng?

Lời giải:

Gọi x là số ngày ít nhất mà ba tàu lại cập cảng cùng nhau. (x ∈ ℕ*)

Vì tàu thứ nhất cứ 10 ngày thì cập cảng một lần nên x là bội của 10.

Tàu thứ hai cứ 12 ngày thì cập cảng một lần nên x là bội của 12.

Tàu thứ ba cứ 15 ngày thì cập cảng một lần nên x là bội của 15.

Do đó x là bội chung của 10, 12 và 15

Mà x là ít nhất nên x là bội chung nhỏ nhất của 10, 12 và 15.

Ta đi tìm BCNN(10, 12, 15)

Ta có: 10 = 2 . 5; 12 = 3 . 4 = 3 . 22; 15 = 3 . 5

Khi đó: BCNN(10, 12, 15) = 22 . 3 . 5 = 4 . 3 . 5 = 60

Hay x = 60 

Vậy sau ít nhất 60 ngày thì ba tàu lại cùng nhau cập cảng.

Có thể em chưa biết (trang 58)

Có thể em chưa biết – Bài 1 trang 58 Toán lớp 6 Tập 1: Lịch can Chi

Một số nước phương Đông, trong đó có Việt Nam, gọi tên năm âm lịch bằng cách ghép tên của một trong 10 can (theo thứ tự là Giáp, Ất, Bính, Đinh, Mậu, Kỷ, Canh, Tân, Nhâm, Quý) với tên của một trong 12 chi (theo thứ tự là Tỷ, Sửu, Dần, Mão, Thìn, Tỵ, Ngọ, Mùi, Thân, Dậu, Tuất, Hợi). Đầu tiên, Giáp được ghép với Tý thành năm Giáp Tý. Cứ 10 năm, Giáp được lặp lại. Cứ 12 năm, Tý được lặp lại:

Lịch can Chi. Một số nước phương Đông, trong đó có Việt Nam, gọi tên năm âm lịch

Giải thích tại sao cứ 60 năm thì năm Giáp Tý được lặp lại?

Lời giải:

Vì cứ 10 năm, can Giáp được lặp lại. Cứ 12 năm, chi Tý được lặp lại, nên số năm Giáp Tý được lặp lại là bội chung của 10 và 12. Và số năm ít nhất năm Giáp Tý lặp lại là bội chung nhỏ nhất của 10 và 12. 

Phân tích 10 và 12 ra thừa số nguyên tố ta được:

10 = 2 . 5 

12 = 2 . 2 . 3 = 22 . 3

Các thừa số nguyên tố chung và riêng của 10 và 12 là 2, 3, 5 với số mũ lớn nhất lần lượt là: 2, 1, 1.

Khi đó: BCNN(10, 12) = 22 . 3 . 5 = 60.

Vậy cứ sau 60 năm thì năm Giáp Tý được lặp lại.

Xem thêm các bài giải SGK Toán lớp 6 Cánh diều hay, chi tiết khác:

Bài 12: Ước chung và ước chung lớn nhất

Bài tập cuối chương 1

Bài 1: Số nguyên âm

Bài 2: Tập hợp các số nguyên

====== ****&**** =====

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Cho tứ diện ABCD. Trên ba cạnh AB, AC, AD lần lượt lấy các điểm B', C', D' sao cho đường thẳng B'C'cắt đường thẳng BC tại K, đường thẳng C'D' cắt đường thẳng CD tại J, đường thẳng D'B' cắt đường thẳng DB tại I.a) Chứng minh ba điểm I, J, K thẳng hàng.b) Lấy điểm M ở giữa đoạn thẳng BD; điểm N ở giữa đoạn thẳng CD sao cho đường thẳng MN cắt đường thẳng BC và điểm F nằm bên trong tam giác ABC. Xác định thiết diện của tứ diện ABCD khi cắt bởi mặt phẳng (MNF).

Next post

Sách bài tập Toán 6 (Chân trời sáng tạo) Bài ôn tập chương 1

Bài liên quan:

Giải SGK Toán 6 Bài 1 (Cánh diều): Tập hợp

Giải SGK Toán 6 Bài 2 (Cánh diều): Tập hợp các số tự nhiên

Giải SGK Toán 6 Bài 3 (Cánh diều): Phép cộng, phép trừ các số tự nhiên

Giải SGK Toán 6 Bài 4 (Cánh diều): Phép nhân, phép chia các số tự nhiên

Giải SGK Toán 6 Bài 5 (Cánh diều): Phép tính luỹ thừa với số mũ tự nhiên

Giải SGK Toán 6 Bài 6 (Cánh diều): Thứ tự thực hiện các phép tính

Giải SGK Toán 6 Bài 7 (Cánh diều): Quan hệ chia hết. Tính chất chia hết

Giải SGK Toán 6 Bài 8 (Cánh diều): Dấu hiệu chia hết cho 2, cho 5

Leave a Comment Hủy

Mục lục

  1. Giải SGK Toán 6 Bài 1 (Cánh diều): Tập hợp
  2. Giải SGK Toán 6 Bài 2 (Cánh diều): Tập hợp các số tự nhiên
  3. Giải SGK Toán 6 Bài 3 (Cánh diều): Phép cộng, phép trừ các số tự nhiên
  4. Giải SGK Toán 6 Bài 4 (Cánh diều): Phép nhân, phép chia các số tự nhiên
  5. Giải SGK Toán 6 Bài 5 (Cánh diều): Phép tính luỹ thừa với số mũ tự nhiên
  6. Giải SGK Toán 6 Bài 6 (Cánh diều): Thứ tự thực hiện các phép tính
  7. Giải SGK Toán 6 Bài 7 (Cánh diều): Quan hệ chia hết. Tính chất chia hết
  8. Giải SGK Toán 6 Bài 8 (Cánh diều): Dấu hiệu chia hết cho 2, cho 5
  9. Giải SGK Toán 6 Bài 9 (Cánh diều): Dấu hiệu chia hết cho 3, cho 9
  10. Giải SGK Toán 6 Bài 10 (Cánh diều): Số nguyên tố. Hợp số
  11. Giải SGK Toán 6 Bài 11 (Cánh diều): Phân tích một số ra thừa số nguyên tố
  12. Giải SGK Toán 6 Bài 12 (Cánh diều): Ước chung và ước chung lớn nhất
  13. Giải SGK Toán 6 (Cánh diều) Bài tập cuối chương 1
  14. Giải SGK Toán 6 Bài 1 (Cánh diều): Số nguyên âm
  15. Giải SGK Toán 6 Bài 2 (Cánh diều): Tập hợp các số nguyên
  16. Giải SGK Toán 6 Bài 3 (Cánh diều): Phép cộng các số nguyên
  17. Giải SGK Toán 6 Bài 4 (Cánh diều): Phép trừ số nguyên. Quy tắc dấu ngoặc
  18. Giải SGK Toán 6 Bài 5 (Cánh diều): Phép nhân các số nguyên
  19. Giải SGK Toán 6 Bài 6 (Cánh diều): Phép chia hết hai số nguyên. Quan hệ chia hết trong tập hợp số nguyên
  20. Toán 6 (Cánh diều) Bài tập cuối chương 2
  21. Giải SGK Toán 6 Bài 1 (Cánh diều): Tam giác đều. Hình vuông. Lục giác đều
  22. Giải SGK Toán 6 Bài 2 (Cánh diều): Hình chữ nhật. Hình thoi
  23. Giải SGK Toán 6 Bài 3 (Cánh diều): Hình bình hành
  24. Giải SGK Toán 6 Bài 4 (Cánh diều): Hình thang cân
  25. Giải SGK Toán 6 Bài 5 (Cánh diều): Hình có trục đối xứng
  26. Giải SGK Toán 6 Bài 6 (Cánh diều): Hình có tâm đối xứng
  27. Giải SGK Toán 6 Bài 7 (Cánh diều): Đối xứng trong thực tiễn
  28. Giải SGK Toán 6 (Cánh diều) Bài tập cuối chương 3
  29. Giải SGK Toán 6 (Cánh diều) Bài Thực hành phần mềm Geogebra
  30. Giải SGK Toán 6 Bài 1 (Cánh diều): Thu thập, tổ chức, biểu diễn, phân tích và xử lí dữ liệu
  31. Giải SGK Toán 6 Bài 2 (Cánh diều): Biểu đồ cột kép
  32. Giải SGK Toán 6 Bài 3 (Cánh diều): Mô hình xác suất trong một số trò chơi và thí nghiệm đơn giản
  33. Giải SGK Toán 6 Bài 4 (Cánh diều): Xác suất thực nghiệm trong một trò chơi và thí nghiệm đơn giản
  34. Giải SGK Toán 6 (Cánh diều) Bài ôn tập cuối chương 4
  35. Giải SGK Toán lớp 6 Bài 1 (Cánh diều): Phân số với tử và mẫu là số nguyên
  36. Giải SGK Toán lớp 6 Bài 2 (Cánh diều): So sánh các phân số. Hỗn số dương
  37. Giải SGK Toán lớp 6 Bài 3 (Cánh diều): Phép cộng. Phép trừ phân số – Cánh diều
  38. Giải SGK Toán lớp 6 Bài 4 (Cánh diều): Phép nhân, phép chia phân số – Cánh diều
  39. Giải SGK Toán lớp 6 Bài 5 (Cánh diều): Số thập phân
  40. Giải SGK Toán lớp 6 Bài 6 (Cánh diều): Phép cộng, phép trừ số thập phân
  41. Giải SGK Toán lớp 6 Bài 7 (Cánh diều): Phép nhân, phép chia số thập phân – Cánh diều
  42. Giải SGK Toán lớp 6 Bài 8 (Cánh diều): Ước lượng và làm tròn số – Cánh diều
  43. Giải SGK Toán lớp 6 Bài 9 (Cánh diều): Tỉ số. Tỉ số phần trăm – Cánh diều
  44. Giải SGK Toán lớp 6 Bài 10 (Cánh diều): Hai bài toán về phân số – Cánh diều
  45. Giải SGK Toán lớp 6 (Cánh diều) Bài tập cuối chương 5 – Cánh diều
  46. Giải SGK Toán lớp 6 Hoạt động thực hành và trải nghiệm. Chủ đề 2. Chỉ số khối cơ thể (BMI) – Cánh diều
  47. Giải SGK Toán lớp 6 Bài 1 (Cánh diều): Điểm. Đường thẳng
  48. Giải SGK Toán lớp 6 Bài 2 (Cánh diều): Hai đường thẳng cắt nhau. Hai đường thẳng song song
  49. Giải SGK Toán lớp 6 Bài 3 (Cánh diều): Đoạn thẳng
  50. Giải SGK Toán lớp 6 Bài 4 (Cánh diều): Tia
  51. Giải SGK Toán lớp 6 (Cánh diều) Bài 5. Góc
  52. Giải SGK Toán lớp 6 (Cánh diều) Bài tập cuối chương 6

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán