Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SBT Toán 12 – Cánh diều

Sách bài tập Toán 12 Bài 1 (Cánh diều): Khoảng biến thiên, khoảng tứ phân vị của mẫu số liệu ghép nhóm

By admin 18/11/2024 0

Giải SBT Toán 12 Bài 1: Khoảng biến thiên, khoảng tứ phân vị của mẫu số liệu ghép nhóm

Bài 1 trang 90 SBT Toán 12 Tập 1: Việc kiểm tra chỉ số đường huyết thường xuyên đóng vai trò vô cùng quan trọng để phòng và điều trị bệnh tiểu đường. Khi điều tra chỉ số đường huyết của 100 người cao tuổi ở một địa phương, được kết quả từ 5,0 đến 11,3. Nếu sử dụng mẫu số liệu ghép nhóm để biểu diễn chỉ số đường huyết của 100 người đó thì khoảng biến thiên của mẫu số liệu ghép nhóm đó là bao nhiêu?

A. 5,0.

B. 11,3.

C. 6,3.

D. 100.

Lời giải:

Đáp án đúng là: C

Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: R = 11,3 – 5,0 = 6,3.

Vậy chọn đáp án C.

Bài 2 trang 91 SBT Toán 12 Tập 1: Nhịp tim người cao tuổi luôn là vấn đề phải được quan tâm vì liên quan đến sức khỏe. Khi điều tra nhịp tim của 100 người cao tuổi ở một địa phương, được kết quả từ 65 nhịp/phút đến 81 nhịp/phút. Nếu sử dụng mẫu số liệu ghép nhóm để biểu diễn nhịp tim của 100 người cao tuổi đó thì khoảng biến thiên của mẫu số liệu ghép nhóm đó là bao nhiêu?

A. 81.

B. 16.

C. 65.

D. 100.

Lời giải:

Đáp án đúng là: B

Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: R = 81 – 65 = 16 (nhịp/phút).

Vậy chọn đáp án B.

Bài 3 trang 91 SBT Toán 12 Tập 1: Một mẫu số liệu ghép nhóm có tứ phân vị Q1 = 4, Q2 = 6, Q3 = 9. Khoảng tứ phân vị của mẫu số liệu ghép nhóm đó là bao nhiêu?

A. 5.

B. 4.

C. 6.

D. 9.

Lời giải:

Đáp án đúng là: A

Khoảng tứ phân vị của mẫu số liệu ghép nhóm đó là: ∆Q = Q3 – Q1 = 9 – 4 = 5.

Vậy chọn đáp án A.

Bài 4 trang 91 SBT Toán 12 Tập 1: Khi điều tra cân nặng của 50 bé trai 6 tuổi, người ta được kết quả ở Bảng 7. Khoảng biến thiên của mẫu số liệu ghép nhóm đó là bao nhiêu?

Khi điều tra cân nặng của 50 bé trai 6 tuổi, người ta được kết quả ở Bảng 7

A. 18.

B. 26.

C. 2.

D. 8.

Lời giải:

Đáp án đúng là: D

Trong mẫu số liệu ghép nhóm trên, ta có: đầu mút trái của nhóm 1 là a1 = 18, đầu mút phải của nhóm 4 là a5 = 26.

Vậy khoảng biến thiên của mẫu số liệu ghép nhóm đó là:

R = a5 – a1 = 26 – 18 = 8.

Chọn D.

Bài 5 trang 91 SBT Toán 12 Tập 1: Khi thống kê số khách hàng vào siêu thị trong 30 ngày đầu tiên khai trương, người ta được kết quả là bảng tần số ghép nhóm như Bảng 8. Khoảng biến thiên của mẫu số liệu ghép nhóm đó là bao nhiêu?

Khi thống kê số khách hàng vào siêu thị trong 30 ngày đầu tiên khai trương

A. 120.

B. 80.

C. 20.

D. 200.

Lời giải:

Đáp án đúng là: A

Trong mẫu số liệu ghép nhóm trên, ta có: đầu mút trái của nhóm 1 là a1 = 80, đầu mút phải của nhóm 6 là a7 = 200.

Vậy khoảng biến thiên của mẫu số liệu ghép nhóm đó là:

R = a7 – a1 = 200 – 80 = 120.

Vậy chọn A.

Bài 6 trang 91 SBT Toán 12 Tập 1: Khi điều tra độ tuổi của dân cư trong một khu phố (đơn vị: tuổi) được kết quả cho bởi Bảng 9.

Khi điều tra độ tuổi của dân cư trong một khu phố (đơn vị: tuổi) được kết quả cho bởi Bảng 9

a) Khoảng biến thiên của mẫu số liệu ghép nhóm đó là:

R = 90 (tuổi).

Khi điều tra độ tuổi của dân cư trong một khu phố (đơn vị: tuổi) được kết quả cho bởi Bảng 9

Khi điều tra độ tuổi của dân cư trong một khu phố (đơn vị: tuổi) được kết quả cho bởi Bảng 9

b) Nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng n4=2004=50.

Khi điều tra độ tuổi của dân cư trong một khu phố (đơn vị: tuổi) được kết quả cho bởi Bảng 9

Khi điều tra độ tuổi của dân cư trong một khu phố (đơn vị: tuổi) được kết quả cho bởi Bảng 9

c) Q3 = 521724.

Khi điều tra độ tuổi của dân cư trong một khu phố (đơn vị: tuổi) được kết quả cho bởi Bảng 9

Khi điều tra độ tuổi của dân cư trong một khu phố (đơn vị: tuổi) được kết quả cho bởi Bảng 9

d) Khoảng tứ phân vị của mẫu số liệu lớn hơn 20.

Khi điều tra độ tuổi của dân cư trong một khu phố (đơn vị: tuổi) được kết quả cho bởi Bảng 9

Khi điều tra độ tuổi của dân cư trong một khu phố (đơn vị: tuổi) được kết quả cho bởi Bảng 9

Lời giải:

a) S

b) Đ

c) S

d) Đ

Trong mẫu số liệu ghép nhóm trên, ta có: đầu mút trái của nhóm 1 là a1 = 10, đầu mút phải của nhóm 8 là a9 = 90.

Vậy khoảng biến thiên của mẫu số liệu ghép nhóm đó là:

R = a9 – a1 = 90 – 10 = 80 (tuổi).

Ta có bảng sau:

Khi điều tra độ tuổi của dân cư trong một khu phố (đơn vị: tuổi) được kết quả cho bởi Bảng 9

Ta có: n4=2004=50.

Nhận thấy 49 < 50 < 89 nên nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 50.

Xét nhóm 3 là nhóm [30; 40) có s = 30, h = 10, n3 = 40 và nhóm 2 là nhóm [20; 30) có cf2 = 49.

Ta có: Q1 = s + 50−cf2n3.h= 30 + 50−4940.10= 30,25 (tuổi).

Có 3n4=3.2004=150.

Nhận thấy 137 < 150 < 187 nên nhóm 5 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 150.

Xét nhóm 5 là nhóm [50; 60) có đầu mút trái t = 50, độ dài l = 10, tần số n5 = 50 và nhóm 4 là nhóm [40; 50) có tần số tích lũy cf4 = 137.

Ta có: Q3 = t + 150−cf4n5.l = 50 + 150−13750.10= 52,6 (tuổi).

Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho là:

∆Q = Q3 – Q1 = 52,6 – 30,25 = 22,35 (tuổi).

Bài 7 trang 92 SBT Toán 12 Tập 1: Một cuộc khảo sát xác định số năm đã sử dụng của 160 chiếc ô tô. Kết quả điều tra cho trong Bảng 10.

Một cuộc khảo sát xác định số năm đã sử dụng của 160 chiếc ô tô

a) Tính khoảng biến thiên của mẫu số liệu ghép nhóm đó.

b) Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm đó (làm tròn kết quả đến hàng phần mười).

Lời giải:

a) Trong mẫu số liệu ghép nhóm trên, ta có: đầu mút trái của nhóm 1 là a1 = 0, đầu mút phải của nhóm 5 là a6 = 20.

Vậy khoảng biến thiên của mẫu số liệu ghép nhóm đó là:

R = a6 – a1 = 20 – 0 = 20 (năm).

b) Ta có: n4=1604=40.

Nhận thấy 27 < 40 < 64 nên nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 40.

Xét nhóm 3 là nhóm [8; 12) có đầu mút trái s = 8, h = 4, tần số n3 = 37 và nhóm 2 là nhóm [4; 8) có cf2 = 27. Ta có:

Q1 = s + 40−cf2n3.h= 8 + 40−2737.4= 34837(năm).

Ta có: 3n4=3.1604=120.

Nhận thấy 64 < 120 < 121 nên nhóm 4 là nhóm đầu tiên có có tần số tích lũy lớn hơn hoặc bằng 120.

Xét nhóm 4 là nhóm [12; 16) có t = 12, l = 4, n4 = 57 và nhóm 3 có cf3 = 64. Ta có:

Q3 = t + 120−cf3n4.l= 12 + 120−6457.4= 90857(năm).

Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho là:

∆Q = Q3 – Q1 = 90857 − 34837≈ 6,5 (năm).

Bài 8 trang 92 SBT Toán 12 Tập 1: Một thư viện thống kê số người đến đọc sách vào buổi tối trong 30 ngày của một tháng và kết quả được cho bởi Bảng 11.

Một thư viện thống kê số người đến đọc sách vào buổi tối trong 30 ngày của một tháng

a) Tính khoảng biến thiên của mẫu số liệu ghép nhóm đó.

b) Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm đó (làm tròn kết quả đến hàng đơn vị).

Lời giải:

a) Trong mẫu số liệu ghép nhóm trên, ta có: đầu mút trái của nhóm 1 là a1 = 50, đầu mút phải của nhóm 7 là a8 = 90.

Vậy khoảng biến thiên của mẫu số liệu ghép nhóm đó là:

R = a8 – a1 = 90 – 50 = 40 (người).

b) Ta có: n4=304=7,5.

Nhận thấy 4 < 7,5 < 9 nên nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 7,5.

Xét nhóm 2 là nhóm [55; 60) có s = 55; h = 5; n2 = 5 và nhóm 1 là nhóm [50; 55) có cf1 = 4. Ta có:

Q1 = s + 7,5−cf1n2.h= 55 + 7,5−45.5= 58, 5.

Xét 3n4=3.304=22,5.

Nhận thấy 16 < 22,5 < 24 nên nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 22,5.

Có nhóm 4 là nhóm [65; 70) có t = 65, l = 5, n4 = 8 và nhóm 3 là nhóm [60; 65) có cf3 = 16.

Ta có: Q3 = t + 22,5−cf3n4.l= 65 + 22,5−168.5= 69,0625.

Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho là:

∆Q = Q3 – Q1 = 69,0625 – 58,5 ≈ 11 (người).

Lý thuyết Khoảng biến thiên, khoảng tứ phân vị của mẫu số liệu ghép nhóm

1. Khoảng biến thiên

a) Định nghĩa

Xét mẫu số liệu ghép nhóm cho trong bảng sau, trong đó n1>0 và nm>0.

Gọi a1,am+1 lần lượt là đầu mút trái của nhóm 1, đầu mút phải của nhóm m.

Hiệu R=am+1−a1 được gọi là khoảng biến thiên của mẫu số liệu ghép nhóm đó

Lý thuyết Khoảng biến thiên, khoảng tứ phân vị của mẫu số liệu ghép nhóm (Cánh diều 2024) | Lý thuyết Toán 12 (ảnh 1)

b) Ý nghĩa

  • Khoảng biến thiên của mẫu số liệu ghép nhóm đo mức độ phân tán của mẫu số đó. Khoảng biến thiên càng lớn thì mẫu số liệu càng phân tán
  • Trong các đại lượng đo mức độ phân tán của mẫu số liệu ghép nhóm, khoảng biến thiên là đại lượng dễ hiểu, dễ tính toán. Tuy nhiên, do khoảng biến thiên chỉ sử dụng hai giá trị  của mẫu số liệu nên đại lượng đó dễ bị ảnh hưởng bởi các giá trị bất thường
  • Khoảng biến thiên của mẫu số liệu ghép nhóm xấp xỉ cho khoảng biến thiên của mẫu số liệu gốc.

2. Khoảng tứ phân vị

a) Định nghĩa

Xét mẫu số liệu ghép nhóm cho bởi bảng sau

Gọi Q1,Q2,Q3 là tứ phân vị của mẫu số liệu đó. Ta gọi hiệu ΔQ=Q3−Q1 là khoảng tứ phân vị của mẫu số liệu đó.

Lý thuyết Khoảng biến thiên, khoảng tứ phân vị của mẫu số liệu ghép nhóm (Cánh diều 2024) | Lý thuyết Toán 12 (ảnh 2)

b) Ý nghĩa

  • Khoảng tứ phân vị của mẫu số liệu ghép nhóm xấp xỉ khoảng tứ phân vị của mẫu số liệu gốc và là một đại lượng cho biết mức độ phân tán của nửa giữa mẫu số liệu.
  • Khoảng tứ phân vị của mẫu số liệu ghép nhóm giúp xác định các giá trị bất thường của mẫu đó. Khoảng tứ phân vị thường được sử dụng thay cho khoảng biến thiên vì nó loại trừ hầu hết các giá trị bất thường của mẫu số liệu và nó không bị ảnh hưởng bởi các giá trị bất thường đó.

Xem thêm các bài giải SBT Toán lớp 12 Cánh diều hay, chi tiết khác:

Bài tập cuối chương 2

Bài 1: Khoảng biến thiên, khoảng tứ phân vị của mẫu số liệu ghép nhóm

Bài 2: Phương sai, độ lệch chuẩn của mẫu số liệu ghép nhóm

Bài tập cuối chương 3

Bài 1: Nguyên hàm

Bài 2: Nguyên hàm của một số hàm số sơ cấp

Tags : Tags 1. Giải sgk Toán 12 Kết nối tri thức Giải bài tập Toán 12 Kết nối tri thức Tập 1   chi tiết)   Tập 2 (hay
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Sách bài tập Toán 12 Bài 2 (Chân trời sáng tạo): Phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm

Next post

Sách bài tập Toán 12 Bài 10 (Kết nối tri thức): Phương sai và độ lệch chuẩn

Bài liên quan:

Sách bài tập Toán 12 Bài 1 (Cánh diều): Tính đơn điệu và cực trị của hàm số

Sách bài tập Toán 12 Bài 2 (Cánh diều): Giá trị lớn nhất và giá trị nhỏ nhất của hàm số

Sách bài tập Toán 12 Bài 3 (Cánh diều): Đường tiệm cận của đồ thị hàm số

Sách bài tập Toán 12 Bài 4 (Cánh diều): Khảo sát sự biến thiên và vẽ đồ thị của hàm số

Sách bài tập Toán 12 (Cánh diều): Bài tập cuối chương 1

Sách bài tập Toán 12 Bài 1 (Cánh diều): Vectơ và các phép toán vectơ trong không gian

Sách bài tập Toán 12 Bài 2 (Cánh diều): Toạ độ của vectơ

Sách bài tập Toán 12 Bài 3 (Cánh diều): Biểu thức toạ độ của các phép toán vectơ

Leave a Comment Hủy

Mục lục

  1. Sách bài tập Toán 12 Bài 1 (Cánh diều): Tính đơn điệu và cực trị của hàm số
  2. Sách bài tập Toán 12 Bài 2 (Cánh diều): Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
  3. Sách bài tập Toán 12 Bài 3 (Cánh diều): Đường tiệm cận của đồ thị hàm số
  4. Sách bài tập Toán 12 Bài 4 (Cánh diều): Khảo sát sự biến thiên và vẽ đồ thị của hàm số
  5. Sách bài tập Toán 12 (Cánh diều): Bài tập cuối chương 1
  6. Sách bài tập Toán 12 Bài 1 (Cánh diều): Vectơ và các phép toán vectơ trong không gian
  7. Sách bài tập Toán 12 Bài 2 (Cánh diều): Toạ độ của vectơ
  8. Sách bài tập Toán 12 Bài 3 (Cánh diều): Biểu thức toạ độ của các phép toán vectơ
  9. Sách bài tập Toán 12 (Cánh diều): Bài tập cuối chương 2
  10. Sách bài tập Toán 12 Bài 2 (Cánh diều): Phương sai, độ lệch chuẩn của mẫu số liệu ghép nhóm
  11. Sách bài tập Toán 12 (Cánh diều): Bài tập cuối chương 3
  12. Sách bài tập Toán 12 Bài 1 (Cánh diều): Nguyên hàm
  13. Sách bài tập Toán 12 Bài 2 (Cánh diều): Nguyên hàm của một số hàm số sơ cấp
  14. Sách bài tập Toán 12 Bài 3 (Cánh diều): Tích phân
  15. Sách bài tập Toán 12 Bài 4 (Cánh diều): Ứng dụng hình học của tích phân
  16. Sách bài tập Toán 12 (Cánh diều): Bài tập cuối chương 4
  17. Sách bài tập Toán 12 Bài 1 (Cánh diều): Phương trình mặt phẳng
  18. Sách bài tập Toán 12 Bài 2 (Cánh diều): Phương trình đường thẳng
  19. Sách bài tập Toán 12 Bài 3 (Cánh diều): Phương trình mặt cầu
  20. Sách bài tập Toán 12 (Cánh diều): Bài tập cuối chương 5
  21. Sách bài tập Toán 12 Bài 1 (Cánh diều): Xác xuất có điều kiện
  22. Sách bài tập Toán 12 Bài 2 (Cánh diều): Công thức xác suất toàn phần. Công thức Bayes
  23. Sách bài tập Toán 12 (Cánh diều): Bài tập cuối chương 6

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán