Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SBT Toán 7 – Kết nối

Sách bài tập Toán 7 Bài 16 (Kết nối tri thức): Tam giác cân. Đường trung trực của đoạn thẳng

By admin 18/04/2023 0

Giải SBT Toán lớp 7 Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng

Giải trang 68 Tập 1

Bài 4.41 trang 68 Tập 1: Trong những tam giác dưới đây (H.4.46), tam giác nào là tam giác cân, cân tại đỉnh nào? Vì sao?

Sách bài tập Toán 7 Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng - Kết nối tri thức (ảnh 1)

Hướng dẫn giải

+ Tam giác ABC có AB = AC (kí hiệu bằng nhau trên hình)

Do đó, tam giác ABC cân tại đỉnh A.

+ Áp dụng định lí tổng 3 góc trong tam giác DEF, ta có:

D^+E^+F^=180°

Suy ra F^=180°−D^+E^=180°−70°+50°=60°.

Do đó ta có, D^≠E^≠F^. Vậy tam giác DEF không phải tam giác cân.

+ Tam giác MNP có N^=P^   =50°.

Do đó, tam giác MNP cân tại đỉnh M.

+ Áp dụng định lí tổng 3 góc trong tam giác KGH, ta có:

K^+G^+H^=180°

Suy ra H^=180°−K^+G^=180°−40°+70°=70°.

Do đó tam giác KGH có G^=H^ =70°.

Vậy tam giác KGH cân tại đỉnh K.

Bài 4.42 trang 68 Tập 1: Tính số đo các góc còn lại trong các tam giác cân dưới đây (H.4.47).

Sách bài tập Toán 7 Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng - Kết nối tri thức (ảnh 1)

Hướng dẫn giải

+ Tam giác ABC có AB = AC nên tam giác ABC cân tại đỉnh A.

Suy ra C^=B^=65°.

Áp dụng định lí tổng ba góc trong tam giác ABC, ta có:

A^+B^+C^=180°

Suy ra A^=180°−B^+C^=180°−65°+65°=50°.

+ Tam giác MNP có MN = MP nên tam giác MNP cân tại đỉnh M.

Suy ra M^=N^.

Áp dụng định lí tổng ba góc trong tam giác MNP, ta có:

M^+N^+P^=180°

⇒M^+M^=180°−P^⇒2M^=180°−P^

⇒M^=180°−P^2=180°−75°2=52,5°.

Vậy M^=N^=52,5°.

Giải trang 69 Tập 1

Bài 4.43 trang 69 Tập 1: Tam giác ABC có hai đường cao BE và CF bằng nhau (H.4.48). Chứng minh rằng tam giác ABC cân tại đỉnh A.

Sách bài tập Toán 7 Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng - Kết nối tri thức (ảnh 1)

Hướng dẫn giải

Tam giác ABE vuông tại E, do đó:

A^+ABE^=90°⇒ABE^=90°−A^.

Tam giác ACF vuông tại F, do đó:

A^+ACF^=90°⇒ACF^=90°−A^.

Từ đó, suy ra ABE^=ACF^.

Xét tam giác vuông AEB và tam giác vuông AFC có:

BE = CF (theo giả thiết)

ABE^=ACF^ (cmt)

Do đó, ∆AEB = ∆AFC (cạnh góc vuông và góc nhọn kề nó).

Suy ra AB = AC (hai cạnh tương ứng).

Vậy tam giác ABC cân tại đỉnh A.

Bài 4.44 trang 69 Tập 1: Cho tam giác ABC vuông tại đỉnh A. Gọi M là trung điểm của BC và D là điểm nằm trên tia đối của tia MA sao cho MD = MA (H.4.49). Chứng minh rằng:

a) ∆ABD vuông tại B.

b) ∆ABD = ∆BAC.

c) Các tam giác AMB, AMC là các tam giác cân tại đỉnh M.

Sách bài tập Toán 7 Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng - Kết nối tri thức (ảnh 1)

Hướng dẫn giải

a) Xét tam giác AMC và tam giác DMB có:

MA = MD (gt)

MB = MC (M là trung điểm của BC)

AMC^=DMB^ (hai góc đối đỉnh)

Do đó, ∆AMC = ∆DMB (c – g – c).

Suy ra DBM^=ACM^ (hai góc tương ứng).

Do tam giác ABC vuông tại A nên ABC^+ACM^=ABC^+ACB^=90°.

Khi đó, ta có: ABD^=ABC^+CBD^=ABC^+DBM^= ABC^+ACM^=90°.

Suy ra ABD^=90°.

Vậy tam giác ABD vuông tại B.

b) Xét tam giác vuông ABD và tam giác vuông BAC có:

BD = AC (do ∆AMC = ∆DMB)

AB: cạnh chung

Do đó, ∆ABD = ∆BAC (hai cạnh góc vuông).

c) Do tam giác ABC vuông tại A nên AC ⊥ AB tại A.

Tam giác ABD vuông tại B nên DB ⊥ AB tại B.

Suy ra AC // DB (do cùng vuông góc với AB).

⇒BDA^=CAD^ (hai góc so le trong).

Lại có: ACB^=BDA^ (do ∆ABD = ∆BAC).

Do đó, CAD^=ACB^, hay CAM^=ACM^.

Suy ra tam giác AMC cân tại đỉnh M.

Khi đó MA = MC.

Mà MB = MC (do M là trung điểm của BC).

Nên MA = MB = MC.

Do đó, tam giác AMB cân tại đỉnh M.

Bài 4.45 trang 69 Tập 1: Cho tam giác ABC là tam giác cân đỉnh A. Chứng minh rằng:

a) Hai đường trung tuyến BM, CN bằng nhau (H.4.50a).

b) Hai đường phân giác BE, CF bằng nhau (H.4.50b).

Sách bài tập Toán 7 Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng - Kết nối tri thức (ảnh 1)

Hướng dẫn giải

a) Do BM và CN là đường trung tuyến của tam giác ABC nên M và N lần lượt là trung điểm của AC và AB.

Khi đó, AM=MC=AC2;   AN=NB=AB2.

Mà AB = AC (do tam giác ABC cân tại đỉnh A).

Do đó, AM = MC = AN = NB.

Xét tam giác ABM và tam giác ACN có:

AB = AC

A^: góc chung

AM = AN

Do đó, ∆ABM = ∆ACN (c – g – c).

Suy ra BM = CN (đpcm).

b) Do BE là đường phân giác của góc ABC nên ABE^=12ABC^.

Và CF là đường phân giác của góc ACB nên ACF^=12ACB^.

Lại có ABC^=ACB^ (do tam giác ABC cân tại đỉnh A).

Do đó, ABE^=ACF^.

Xét tam giác ABE và tam giác ACF có:

A^: góc chung

AB = AC

ABE^=ACF^

Do đó, ∆ABE = ∆ACF (g – c – g)

Suy ra, BE = CF (đpcm).

Bài 4.46 trang 69 Tập 1: Cho các điểm A, B, C, D, E như Hình 4.51. Chứng minh rằng:

a) ∆AEB và ∆DEC là các tam giác cân đỉnh E.

b) AB // CD.

Sách bài tập Toán 7 Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng - Kết nối tri thức (ảnh 1)

Hướng dẫn giải

a) Xét tam giác vuông ADB và tam giác vuông BCA có:

AB: cạnh huyền chung

AD = CB (gt)

Do đó, ∆ADB = ∆BCA (cạnh huyền – cạnh góc vuông).

Suy ra DBA^=CAB^.

Khi đó tam giác EAB cân tại đỉnh E.

Xét tam giác vuông ADE và tam giác vuông BCE có:

AD = CB (gt)

EA = EB (∆EAB cân tại đỉnh E)

Do đó, ∆ADE = ∆BCE (cạnh huyền – cạnh góc vuông).

Suy ra ED = EC.

Do đó, tam giác EDC cân tại đỉnh E.

b) Theo định lí tổng 3 góc trong tam giác EAB, ta có:

EBA^+EAB^+AEB^=180°

Mà EBA^=EAB^ (chứng minh trên)

Suy ra EBA^=180°−AEB^2.      (1)

Theo định lí tổng 3 góc trong tam giác EDC, ta có:

EDC^+ECD^+DEC^=180°

Mà EDC^=ECD^ (∆ECD cân tại đỉnh E).

Suy ra EDC^=180°−DEC^2.      (2)

Ta lại có: AEB^=DEC^ (hai góc đối đỉnh).    (3)

Từ (1), (2) và (3) suy ra EBA^=EDC^, hay DBA^=BDC^.

Mà hai góc này ở vị trí so le trong.

Vậy AB // DC.

Giải trang 70 Tập 1

Bài 4.47 trang 70 Tập 1: Cho tam giác ABH vuông tại đỉnh H có ABH^=60°. Trên tia đối của tia HB lấy điểm C sao cho HB = HC (H.4.52). Chứng minh rằng ∆ABC là tam giác đều và BH = AB2.

Sách bài tập Toán 7 Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng - Kết nối tri thức (ảnh 1)

Hướng dẫn giải

+ Xét tam giác vuông ABH và tam giác vuông ACH có:

AH: cạnh chung

HB = HC (gt)

Do đó, ∆ABH = ∆ACH (hai cạnh góc vuông).

Suy ra AB = AC.   (1)

Do đó, tam giác ABC cân tại đỉnh A.

⇒ C^=B^=ABH^=60°.

Ta có: BAC^+B^+C^=180° (định lí tổng ba góc trong tam giác).

Suy ra BAC^=180°−B^−C^=180°−60°−60°=60°.

Khi đó B^=BAC^, do đó tam giác ABC cân tại đỉnh C nên  AC = BC. (2)

Từ (1) và (2) suy ra AB = AC = BC.

Do đó, ∆ABC đều.

+ Vì H thuộc BC và điểm H nằm giữa điểm B và điểm C, hơn nữa HB = HC, do đó H là trung điểm của BC.

Suy ra BH=BC2.

Mà BC = AB (chứng minh trên).

Vậy BH = AB2.

Bài 4.48 trang 70 Tập 1: Đường thẳng d trong hình nào dưới đây là trung trực của đoạn thẳng AB?

Sách bài tập Toán 7 Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng - Kết nối tri thức (ảnh 1)

Hướng dẫn giải

Đường thẳng vuông góc với một đoạn thẳng tại trung điểm của nó được gọi là đường trung trực của đoạn thẳng đó.

Do đó, trong các Hình 4.53, chỉ có đường thẳng d trong Hình 4.53a là đường trung trực của đoạn thẳng.

Bài 4.49 trang 70 Tập 1: Cho A là một điểm tùy ý nằm trên đường trung trực của đoạn thẳng BC sao cho A không thuộc BC. Khẳng định nào dưới đây là đúng?

a) AB = AC.

b) Tam giác ABC đều.

c) ABC^=ACB^.

d) Tam giác ABC cân tại đỉnh A.

Hướng dẫn giải

Sách bài tập Toán 7 Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng - Kết nối tri thức (ảnh 1)

Điểm A thuộc đường trung trực của BC nên AB = AC (điểm thuộc đường trung trực của một đoạn thẳng thì cách đều hai đầu mút của đoạn thẳng đó).

Do đó, ∆ABC cân tại đỉnh A.

Suy ra ABC^=ACB^.

Vậy các câu a), c), d) đúng.

Câu b) chưa đúng vì ta chưa đủ dữ kiện để tam giác ABC đều, do ta chỉ có AB = AC, và độ dài đoạn thẳng BC bất kì.

Bài 4.50 trang 70 Tập 1: Cho tam giác ABC cân tại đỉnh A có đường cao AH. Cho M là một điểm tùy ý trên đường thẳng AH sao cho M không trùng với A (H.4.54). Chứng minh rằng: MBA^=MCA^.

Sách bài tập Toán 7 Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng - Kết nối tri thức (ảnh 1)

Hướng dẫn giải

Xét tam giác vuông ABH và tam giác vuông ACH có:

AB = AC (∆ABC cân tại đỉnh A)

AH: cạnh chung

Do đó, ∆ABH = ∆ACH (cạnh huyền – cạnh góc vuông).

Suy ra BAH^=CAH^, hay BAM^=CAM^.

Xét tam giác ABM và ACM có:

AB = AC (∆ABC cân tại đỉnh A)

BAM^=CAM^

AM: cạnh chung

Do đó, ∆ABM = ∆ACM (c – g – c).

Suy ra MBA^=MCA^.

Xem thêm các bài giải SBT Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

Bài 15: Các trường hợp bằng nhau của tam giác vuông

Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng

Ôn tập chương 4

Bài 17: Thu thập và phân loại dữ liệu

Bài 18: Biểu đồ hình quạt tròn

====== ****&**** =====

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giải SGK Toán 7 (Kết nối tri thức) Bài tập cuối chương 3

Next post

Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x – 2y + z + 3 = 0\). Mặt phẳng \(\left( P \right)\) đi qua điểm có tọa độ nào dưới đây?

Bài liên quan:

Sách bài tập Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ

Sách bài tập Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ

Sách bài tập Toán 7 Bài 3 (Kết nối tri thức): Luỹ thừa với số mũ tự nhiên của một số hữu tỉ

Sách bài tập Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế

Sách bài tập Toán 7 (Kết nối tri thức): Ôn tập chương 1 trang 20, 21

Sách bài tập Toán 7 Bài 5 (Kết nối tri thức): Làm quen với số thập phân vô hạn tuần hoàn

Sách bài tập Toán 7 Bài 6 (Kết nối tri thức): Số vô tỉ. Căn bậc hai số học

Sách bài tập Toán 7 Bài 7 (Kết nối tri thức): Tập hợp các số thực

Leave a Comment Hủy

Mục lục

  1. Sách bài tập Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  2. Sách bài tập Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  3. Sách bài tập Toán 7 Bài 3 (Kết nối tri thức): Luỹ thừa với số mũ tự nhiên của một số hữu tỉ
  4. Sách bài tập Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  5. Sách bài tập Toán 7 (Kết nối tri thức): Ôn tập chương 1 trang 20, 21
  6. Sách bài tập Toán 7 Bài 5 (Kết nối tri thức): Làm quen với số thập phân vô hạn tuần hoàn
  7. Sách bài tập Toán 7 Bài 6 (Kết nối tri thức): Số vô tỉ. Căn bậc hai số học
  8. Sách bài tập Toán 7 Bài 7 (Kết nối tri thức): Tập hợp các số thực
  9. Sách bài tập Toán 7 (Kết nối tri thức) Ôn tập chương 2 trang 33, 34
  10. Sách bài tập Toán 7 Bài 8 (Kết nối tri thức): Góc ở vị trí đặc biệt. Tia phân giác của một góc
  11. Sách bài tập Toán 7 Bài 9 (Kết nối tri thức): Hai đường thẳng song song và dấu hiệu nhận biết
  12. Sách bài tập Toán 7 Bài 10 (Kết nối tri thức): Tiên đề Euclid. Tính chất của hai đường thẳng song song
  13. Sách bài tập Toán 7 Bài 11(Kết nối tri thức): Định lí và chứng minh định lí
  14. Sách bài tập Toán 7 (Kết nối tri thức) Ôn tập chương 3
  15. Sách bài tập Toán 7 Bài 12 (Kết nối tri thức): Tổng các góc trong một tam giác
  16. Sách bài tập Toán 7 Bài 13 (Kết nối tri thức): Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác
  17. Sách bài tập Toán 7 Bài 14 (Kết nối tri thức): Trường hợp bằng nhau thứ hai và thứ ba của tam giác
  18. Sách bài tập Toán 7 Bài 15 (Kết nối tri thức): Các trường hợp bằng nhau của tam giác vuông
  19. Sách bài tập Toán 7 (Kết nối tri thức) Ôn tập chương 4
  20. Sách bài tập Toán 7 Bài 17 (Kết nối tri thức): Thu thập và phân loại dữ liệu
  21. Sách bài tập Toán 7 Bài 18 (Kết nối tri thức): Biểu đồ hình quạt tròn
  22. Sách bài tập Toán 7 Bài 19 (Kết nối tri thức): Biểu đồ đoạn thẳng
  23. Sách bài tập Toán 7 (Kết nối tri thức) Ôn tập chương 5
  24. Sách bài tập Toán 7 Bài 20 (Kết nối tri thức): Tỉ lệ thức
  25. Sách bài tập Toán 7 Bài 21 (Kết nối tri thức): Tính chất của dãy tỉ số bằng nhau
  26. Sách bài tập Toán 7 Bài 22 (Kết nối tri thức): Đại lượng tỉ lệ thuận
  27. Sách bài tập Toán 7 Bài 23 (Kết nối tri thức): Đại lượng tỉ lệ nghịch
  28. Sách bài tập Toán 7 (Kết nối tri thức) Ôn tập cuối chương 6
  29. Sách bài tập Toán 7 Bài 24 (Kết nối tri thức): Biểu thức đại số
  30. Sách bài tập Toán 7 Bài 25 (Kết nối tri thức): Đa thức một biến
  31. Sách bài tập Toán 7 Bài 26 (Kết nối tri thức): Phép cộng và phép trừ đa thức một biến
  32. Sách bài tập Toán 7 Bài 27 (Kết nối tri thức): Phép nhân đa thức một biến
  33. Sách bài tập Toán 7 Bài 28 (Kết nối tri thức): Phép chia đa thức một biến
  34. Sách bài tập Toán 7 (Kết nối tri thức) Ôn tập cuối chương 7
  35. Sách bài tập Toán 7 Bài 29 (Kết nối tri thức): Làm quen với biến cố
  36. Sách bài tập Toán 7 Bài 30 (Kết nối tri thức): Làm quen với xác suất của biến cố
  37. Sách bài tập Toán 7 (Kết nối tri thức) Ôn tập chương 8

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán