Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SBT Toán 7 – Kết nối

Sách bài tập Toán 7 Bài 14 (Kết nối tri thức): Trường hợp bằng nhau thứ hai và thứ ba của tam giác

By admin 18/04/2023 0

Giải SBT Toán lớp 7 Bài 14: Trường hợp bằng nhau thứ hai và thứ ba của tam giác

Giải trang 60 Tập 1

Bài 4.21 trang 60 Tập 1: Trong mỗi hình dưới đây, hãy chỉ ra một cặp tam giác bằng nhau và giải thích vì sao chúng bằng nhau.

Sách bài tập Toán 7 Bài 14: Trường hợp bằng nhau thứ hai và thứ ba của tam giác - Kết nối tri thức (ảnh 1)

Hướng dẫn giải

*) Hình a:

Xét ∆ABC và ∆DCB có:  

AB = CD (giả thiết)

BC chung

ABC^=DCB^ (giả thiết)

Do đó, ∆ABC = ∆DCB (c – g – c).

*) Hình b:

Xét ∆EFH và ∆EGH có:  

EF = EG (giả thiết)

EH chung

FEH^=GEH^ (giả thiết)

Do đó, ∆EFH = ∆EGH (c – g – c)

*) Hình c:

Xét ∆MON và ∆POQ có:  

MO = PO (giả thiết)

NO = QO (giả thiết)

MON^=POQ^ (hai góc đối đỉnh)

Do đó, ∆MON = ∆POQ (c – g – c).

Giải trang 61 Tập 1

Bài 4.22 trang 61 Tập 1: Cho hai tam giác ABC và DEF bất kỳ, thỏa mãn AB = FE, BC = DF, ABC^=DFE^. Những câu nào dưới đây đúng?

a) ∆ABC = ∆DFE.

b) ∆BAC = ∆EFD.

c) ∆CAB = ∆EFD.

d) ∆ABC = ∆EFD.

Hướng dẫn giải

Vì ABC^=DFE^ nên đỉnh B tương ứng với đỉnh F;

Vì AB = FE mà đỉnh B ứng với đỉnh F thì đỉnh A ứng với đỉnh E.

Suy ra đỉnh C ứng với đỉnh D.

Xét tam giác ABC và tam giác EFD có:

AB = FE;

BC = DF;

 ABC^=DFE^.

Do đó, ∆ABC = ∆EFD (c – g – c).

Vậy chỉ có đáp án d) đúng.

Bài 4.23 trang 61 Tập 1: Cho hai tam giác ABC và MNP bất kì, thỏa mãn ABC^=PNM^, ACB^=NPM^ và BC = PN. Những câu nào dưới đây đúng?

a) ∆ABC = ∆PNM.

b) ∆ABC = ∆NPM.

c) ∆ABC = ∆MPN.

d) ∆ABC = ∆MNP.

Hướng dẫn giải

Vì ABC^=PNM^ nên đỉnh B tương ứng với đỉnh N;

Vì ACB^=NPM^ nên đỉnh C tương ứng với đỉnh P.

Suy ra đỉnh A tương ứng với đỉnh M.

Xét tam giác ABC và tam giác MNP có:

ABC^=PNM^

ACB^=NPM^

BC = PN

Do đó, ∆ABC = ∆MNP (g – c – g).

Trong bốn đáp án chỉ có đáp án d chính xác.

Bài 4.24 trang 61 Tập 1:Cho các điểm A, B, C, D như Hình 4.24, biết rằng AC = BD và DBA^=CAB^.

Chứng minh rằng AD = BC.

Sách bài tập Toán 7 Bài 14: Trường hợp bằng nhau thứ hai và thứ ba của tam giác - Kết nối tri thức (ảnh 1)

Hướng dẫn giải

Xét ∆ABC và ∆BAD có:

AC = BD (giả thiết)  

AB chung

CAB^=DBA^ (giả thiết)

Do đó, ∆ABC = ∆BAD (c – g – c)

Suy ra, BC = AD (hai cạnh tương ứng).

Bài 4.25 trang 61 Tập 1: Cho các điểm A, B, C, D như Hình 4.25, biết rằng BAC^=BAD^ và BCA^=BDA^.

Chứng minh rằng ∆ABC = ∆ABD.

Sách bài tập Toán 7 Bài 14: Trường hợp bằng nhau thứ hai và thứ ba của tam giác - Kết nối tri thức (ảnh 1)

Hướng dẫn giải

Xét tam giác ABC có:

ABC^+BAC^+BCA^=180°

ABC^=180°−BAC^−BCA^(1)

Xét tam giác ABD có:

ABD^+BAD^+BDA^=180°

ABD^=180°−BAD^−BDA^(2)

Mà BAC^=BAD^; BCA^=BDA^ (3)

Từ (1), (2), (3) ta suy ra ABC^=ABD^.

Xét ∆ABC và ∆ABD có:  

ABC^=ABD^ (chứng minh trên)

AB chung

BAC^=BAD^ (giả thiết)

Do đó, ∆ABC = ∆ABD (g – c – g).

Bài 4.26 trang 61 Tập 1: Cho các điểm A, B, C, D, E như Hình 4.26, biết rằng AB = CD, BAE^=DCE^. Chứng minh rằng:

a) E là trung điểm của các đoạn thẳng AC và BD.

b) ∆ACD = ∆CAB.

c) AD song song với BC.

Sách bài tập Toán 7 Bài 14: Trường hợp bằng nhau thứ hai và thứ ba của tam giác - Kết nối tri thức (ảnh 1)

Hướng dẫn giải

Sách bài tập Toán 7 Bài 14: Trường hợp bằng nhau thứ hai và thứ ba của tam giác - Kết nối tri thức (ảnh 1)

a) Xét tam giác ABE có:

BAE^+ABE^+AEB^=180°

ABE^=180°−BAE^−AEB^        (1)

Xét tam giác CDE có:

DCE^+DEC^+EDC^=180°

EDC^=180°−DCE^−DEC^       (2)

Mà BAE^=DCE^ (giả thiết); AEB^=DEC^ (hai góc đối đỉnh) (3)

Từ (1), (2), (3) ta suy ra ABE^=EDC^.

Xét ∆ABE và ∆CDE có:

ABE^=EDC^ (chứng minh trên)

AB = CD (giả thiết)

BAE^=DCE^ (giả thiết)

Do đó, ∆ABE = ∆CDE (g – c – g).

Suy ra, AE = CE; BE = DE (các cặp cạnh tương ứng)

Vì AE = CE và E nằm giữa A và C nên E là trung điểm của AC;

Vì BE = DE và B nằm giữa D và B nên E là trung điểm của BD.

b) Xét ∆ACD và ∆CAB có:

CD = AB (giả thiết)

AC chung

BAC^=DCA^ (giả thiết)

Do đó, ∆ACD = ∆CAB (c – g – c).

c) Vì ∆ACD = ∆CAB nên DAC^=BCA^ (hai góc tương ứng)

Mà hai góc này ở vị trí so le trong nên AD song song với BC.

Giải trang 62 Tập 1

Bài 4.27 trang 62 Tập 1: Cho các điểm A, B, C, D, E như Hình 4.27, biết rằng AD = BC, ADE^=BCE^. Chứng minh rằng:

a) DAC^=CBD^.

b) ∆AED = ∆BEC.

c) AB song song với DC.

Sách bài tập Toán 7 Bài 14: Trường hợp bằng nhau thứ hai và thứ ba của tam giác - Kết nối tri thức (ảnh 1)

Hướng dẫn giải

a) Xét tam giác AED có:

ADE^+DAE^+AED^=180°

DAE^=180°−ADE^−AED^ (1)

Xét tam giác BEC có:

BCE^+EBC^+BEC^=180°

EBC^=180°−BCE^−BEC^ (2)

Mà ADE^=BCE^; AED^=BEC^ (hai góc đối đỉnh) (3)

Từ (1); (2); (3) suy ra, DAE^=EBC^ hay DAC^=CBD^ (điều phải chứng minh).

b) Xét ∆AED và ∆BEC ta có:  

DAE^=EBC^ (chứng minh trên)

ADE^=BCE^ (giả thiết)

AD = CB (giả thiết)

Do đó, ∆AED = ∆BEC (g – c – g).

c) Vì ∆AED = ∆BEC nên AE = BE; ED = EC.

Ta có: AC = AE + EC; BD = BE + ED.

Do đó, AC = BD.

Xét ∆ABD và ∆BAC ta có:  

AC = BD (chứng minh trên)

AB chung

AD = CB (giả thiết)

Do đó, ∆ABD = ∆BAC (c – c – c)

Suy ra ABD^=BAC^ (hai góc tương ứng)

Xét tam giác AEB có:

ABE^+BAE^+AEB^=180°

Do đó, 2ABE^=180°−AEB^ (vì ABE^=BAE^ do ABD^=BAC^)

Suy ra ABE^=180°−AEB^2  (4)

Xét ∆ACD và ∆BDC ta có:  

AC = BD (chứng minh trên)

CD chung

AD = CB (giả thiết)

Do đó, ∆ACD = ∆BDC (c – c – c)

Suy ra ACD^=BDC^ (hai góc tương ứng)

Xét tam giác DEC có:

DCE^+EDC^+DEC^=180°

Do đó, 2EDC^=180°−DEC^ (vì EDC^=DCE^ do ACD^=BDC^)

Suy ra EDC^=180°−DEC^2 (5)

Lại có, AEB^,  DEC^ là hai góc đối đỉnh nên AEB^=DEC^ (6)

Từ (4); (5); (6) suy ra ABE^ = EDC^ hay ABD^=BDC^.

Mà hai góc này lại ở vị trí so le trong nên AB // CD.

Bài 4.28 trang 62 Tập 1: Cho tam giác ABC bằng tam giác DEF (H.4.28).

a) Gọi M và N lần lượt là trung điểm các đoạn thẳng BC và EF. Chứng minh rằng AM = DN.

b) Trên hai cạnh AC và DF lấy hai điểm P và Q sao cho BP, EQ lần lượt là phân giác của các góc ABC^ và DEF^. Chứng minh rằng: BP = EQ.

Sách bài tập Toán 7 Bài 14: Trường hợp bằng nhau thứ hai và thứ ba của tam giác - Kết nối tri thức (ảnh 1)

Hướng dẫn giải

a) Vì ∆ABC = ∆DEF nên  

ABC^=DE​F^;   BAC^=EDF^;  ACB^=DFE^AB=DE;  BC=E​F;  AC=DF

Vì M là trung điểm của BC nên BM = MC = 12BC.

Vì N là trung điểm của EF nên EN = NF = 12EF.

Mà BC = EF (chứng minh trên) nên BM = EN.

Xét ∆ABM và ∆DEN ta có:  

BM = EN (chứng minh trên)

AB = DE (chứng minh trên)

ABM^=DE​N^ (do ABC^=DE​F^ chứng minh trên)

Do đó, ∆ABM = ∆DEN (c – g – c).

Suy ra, AM = DN (hai cạnh tương ứng).

b) Vì BP là tia phân giác của góc ABP^ nên ABP^=PBC^=ABC^2 

Vì EQ là tia phân giác của góc DEF^ nên  DE​Q^=QEF^=DE​F^2

Mà ABC^ = DE​F^ nên PBC^ = QEF^.

Xét ∆PBC và ∆QEF ta có:  

BC = EF (chứng minh trên)

PBC^ = QEF^ (chứng minh trên)

PCB^=QFE^ (do ACB^=DFE^ chứng minh trên)

Do đó, ∆PBC = ∆QEF (g – c – g)

Suy ra, BP = EQ (hai cạnh tương ứng).

Bài 4.29 trang 62 Tập 1: Gọi M và N lần lượt là trung điểm các đoạn thẳng cạnh BC và EF của hai tam giác ABC và DEF. Giả sử rằng AB = DE, BC = EF, AM = DN (H.4.29). Chứng minh rằng ∆ABC = ∆DEF.

Sách bài tập Toán 7 Bài 14: Trường hợp bằng nhau thứ hai và thứ ba của tam giác - Kết nối tri thức (ảnh 1)

Hướng dẫn giải

Vì M là trung điểm của BC nên BM = MC = BC2

Vì N là trung điểm của EF nên EN = NF = EF2

Mà BC = EF (giả thiết) nên BM = EN.

Xét ∆ABM và ∆DEN ta có:  

AB = DE (giả thiết)

BM = EN (chứng minh trên)

AM = DN (giả thiết)

Do đó, ∆ABM = ∆DEN (c – c – c).

Suy ra, ABM^=DE​N^(hai góc tương ứng) hay ABC^=DE​F^.

Xét ∆ABC và ∆DEF ta có:

AB = DE (giả thiết)

BC = EF (giả thiết)

ABC^=DE​F^ (chứng minh trên)

Do đó, ∆ABC = ∆DEF (c – g – c).

Bài 4.30 trang 62 Tập 1:Cho hai đoạn thẳng AC và BD cắt nhau tại điểm O sao cho OA = OB = OC = OD như Hình 4.30. Chứng minh ABCD là hình chữ nhật.

Sách bài tập Toán 7 Bài 14: Trường hợp bằng nhau thứ hai và thứ ba của tam giác - Kết nối tri thức (ảnh 1)

Hướng dẫn giải

Xét ∆OAB và ∆OCD ta có:

OA = OC (giả thiết)

AOB^=COD^ (hai góc đối đỉnh)

OB = OD (giả thiết)

Do đó, ∆OAB = ∆OCD (c – g – c).

Suy ra AB = DC và BAO^=OCD^ hay BAC^=ACD^.

Mà hai góc này ở vị trí so le trong, do đó AB // DC (1).

Xét ∆OAD và ∆OCB ta có:

OA = OC (giả thiết)

AOD^=BOC^ (hai góc đối đỉnh)

OD = OB (giả thiết)

Do đó, ∆OAD = ∆OCB (c – g – c).

Suy ra AD = BC và OAD^=OCB^ hay CAD^=ACB^.

Mà hai góc này ở vị trí so le trong nên AD // BC (2).

Từ (1) và (2) suy ra tứ giác ABCD là hình bình hành.

Ta có: OA = OC = OB = OD, AC = OA + OC, BD = OB + OD.

Do đó, AC = BD.

 Xét tam giác ABD và tam giác DCA có:

AB = DC  (chứng minh trên)

AD: cạnh chung

BD = AC (chứng minh trên)

Do đó, ∆ABD = ∆DCA (c – c – c).

Suy ra BAD^=CDA^.

Lại có: BAD^+CDA^=180° (do AB // DC, hai góc ở vị trí trong cùng phía)

Do đó: BAD^=CDA^=180°2=90°.

Vậy hình bình hành ABCD có một góc vuông nên nó là hình chữ nhật.

Xem thêm các bài giải SBT Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

Bài 13: Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác

Bài 14: Trường hợp bằng nhau thứ hai và thứ ba của tam giác

Bài 15: Các trường hợp bằng nhau của tam giác vuông

Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng

Ôn tập chương 4

====== ****&**** =====

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giải SGK Toán 7 Bài 11(Kết nối tri thức): Định lí và chứng minh định lí

Next post

Cho hàm số  có bảng biến thiên như sau: Hàm số đã cho đạt cực tiểu tại:

Bài liên quan:

Sách bài tập Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ

Sách bài tập Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ

Sách bài tập Toán 7 Bài 3 (Kết nối tri thức): Luỹ thừa với số mũ tự nhiên của một số hữu tỉ

Sách bài tập Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế

Sách bài tập Toán 7 (Kết nối tri thức): Ôn tập chương 1 trang 20, 21

Sách bài tập Toán 7 Bài 5 (Kết nối tri thức): Làm quen với số thập phân vô hạn tuần hoàn

Sách bài tập Toán 7 Bài 6 (Kết nối tri thức): Số vô tỉ. Căn bậc hai số học

Sách bài tập Toán 7 Bài 7 (Kết nối tri thức): Tập hợp các số thực

Leave a Comment Hủy

Mục lục

  1. Sách bài tập Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  2. Sách bài tập Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  3. Sách bài tập Toán 7 Bài 3 (Kết nối tri thức): Luỹ thừa với số mũ tự nhiên của một số hữu tỉ
  4. Sách bài tập Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  5. Sách bài tập Toán 7 (Kết nối tri thức): Ôn tập chương 1 trang 20, 21
  6. Sách bài tập Toán 7 Bài 5 (Kết nối tri thức): Làm quen với số thập phân vô hạn tuần hoàn
  7. Sách bài tập Toán 7 Bài 6 (Kết nối tri thức): Số vô tỉ. Căn bậc hai số học
  8. Sách bài tập Toán 7 Bài 7 (Kết nối tri thức): Tập hợp các số thực
  9. Sách bài tập Toán 7 (Kết nối tri thức) Ôn tập chương 2 trang 33, 34
  10. Sách bài tập Toán 7 Bài 8 (Kết nối tri thức): Góc ở vị trí đặc biệt. Tia phân giác của một góc
  11. Sách bài tập Toán 7 Bài 9 (Kết nối tri thức): Hai đường thẳng song song và dấu hiệu nhận biết
  12. Sách bài tập Toán 7 Bài 10 (Kết nối tri thức): Tiên đề Euclid. Tính chất của hai đường thẳng song song
  13. Sách bài tập Toán 7 Bài 11(Kết nối tri thức): Định lí và chứng minh định lí
  14. Sách bài tập Toán 7 (Kết nối tri thức) Ôn tập chương 3
  15. Sách bài tập Toán 7 Bài 12 (Kết nối tri thức): Tổng các góc trong một tam giác
  16. Sách bài tập Toán 7 Bài 13 (Kết nối tri thức): Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác
  17. Sách bài tập Toán 7 Bài 15 (Kết nối tri thức): Các trường hợp bằng nhau của tam giác vuông
  18. Sách bài tập Toán 7 Bài 16 (Kết nối tri thức): Tam giác cân. Đường trung trực của đoạn thẳng
  19. Sách bài tập Toán 7 (Kết nối tri thức) Ôn tập chương 4
  20. Sách bài tập Toán 7 Bài 17 (Kết nối tri thức): Thu thập và phân loại dữ liệu
  21. Sách bài tập Toán 7 Bài 18 (Kết nối tri thức): Biểu đồ hình quạt tròn
  22. Sách bài tập Toán 7 Bài 19 (Kết nối tri thức): Biểu đồ đoạn thẳng
  23. Sách bài tập Toán 7 (Kết nối tri thức) Ôn tập chương 5
  24. Sách bài tập Toán 7 Bài 20 (Kết nối tri thức): Tỉ lệ thức
  25. Sách bài tập Toán 7 Bài 21 (Kết nối tri thức): Tính chất của dãy tỉ số bằng nhau
  26. Sách bài tập Toán 7 Bài 22 (Kết nối tri thức): Đại lượng tỉ lệ thuận
  27. Sách bài tập Toán 7 Bài 23 (Kết nối tri thức): Đại lượng tỉ lệ nghịch
  28. Sách bài tập Toán 7 (Kết nối tri thức) Ôn tập cuối chương 6
  29. Sách bài tập Toán 7 Bài 24 (Kết nối tri thức): Biểu thức đại số
  30. Sách bài tập Toán 7 Bài 25 (Kết nối tri thức): Đa thức một biến
  31. Sách bài tập Toán 7 Bài 26 (Kết nối tri thức): Phép cộng và phép trừ đa thức một biến
  32. Sách bài tập Toán 7 Bài 27 (Kết nối tri thức): Phép nhân đa thức một biến
  33. Sách bài tập Toán 7 Bài 28 (Kết nối tri thức): Phép chia đa thức một biến
  34. Sách bài tập Toán 7 (Kết nối tri thức) Ôn tập cuối chương 7
  35. Sách bài tập Toán 7 Bài 29 (Kết nối tri thức): Làm quen với biến cố
  36. Sách bài tập Toán 7 Bài 30 (Kết nối tri thức): Làm quen với xác suất của biến cố
  37. Sách bài tập Toán 7 (Kết nối tri thức) Ôn tập chương 8

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán