Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Học Toán lớp 6 – Cánh Diều

Lý thuyết Hình chữ nhật. Hình thoi (Cánh diều 2023) hay, chi tiết | Toán lớp 6

By admin 17/04/2023 0

Lý thuyết Toán lớp 6 Bài 2: Hình chữ nhật. Hình thoi

A. Lý thuyết Hình chữ nhật. Hình thoi

I. Hình chữ nhật 

1. Nhận biết hình chữ nhật 

Cho hình chữ nhật ABCD:

 Hình chữ nhật. Hình thoi | Lý thuyết Toán lớp 6 chi tiết Cánh diều

Khi đó hình chữ nhật ABCD có:

+ Hai cạnh đối bằng nhau: AB = CD; AD = BC;

+ Hai cạnh đối AB và CD; AD và BC song song với nhau;

+ Hai đường chéo bằng nhau: AC = BD;

+ Bốn góc ở các đỉnh A, B, C, D đều là góc vuông.

2. Vẽ hình chữ nhật 

Ta sử dụng ê ke để vẽ hình chữ nhật khi biết độ dài hai cạnh của nó:

Chẳng hạn, vẽ hình chữ nhật ABCD biết AB = 6 cm, AD = 9 cm.

Ta thực hiện các bước như sau: 

Bước 1. Vẽ theo một cạnh góc vuông của ê ke đoạn thẳng AB = 6 cm.

Hình chữ nhật. Hình thoi | Lý thuyết Toán lớp 6 chi tiết Cánh diều

Bước 2. Đặt đỉnh góc vuông của ê ke trùng với điểm A và một cạnh ê ke nằm trên AB, vẽ theo cạnh kia của ê ke đoạn thẳng AD = 9 cm.

Hình chữ nhật. Hình thoi | Lý thuyết Toán lớp 6 chi tiết Cánh diều

Bước 3. Xoay ê ke rồi thực hiện tương tự như ở Bước 2 để được cạnh BC = 9 cm.

Hình chữ nhật. Hình thoi | Lý thuyết Toán lớp 6 chi tiết Cánh diều

Bước 4. Vẽ đoạn thẳng CD.

Hình chữ nhật. Hình thoi | Lý thuyết Toán lớp 6 chi tiết Cánh diều

Vậy ta có hình chữ nhật ABCD thỏa mãn yêu cầu bài toán.

3. Chu vi và diện tích hình chữ nhật

Hình chữ có độ dài hai cạnh là a và b, ta có:

– Chu vi của hình chữ nhật là: C = 2(a + b);

– Diện tích của hình chữ nhật là: S = a . b. 

II. Hình thoi

1. Nhận biết hình thoi

Cho hình thoi ABCD, có hai đường chéo AC và BD cắt nhau tại O. 

Hình chữ nhật. Hình thoi | Lý thuyết Toán lớp 6 chi tiết Cánh diều

Khi đó, hình thoi ABCD có: 

+ Bốn cạnh bằng nhau: AB = BC = CD = DA;

+ Hai cạnh đối AB và CD, AD và BC song song với nhau;

+ Hai đường chéo AC và BD vuông góc với nhau.

2. Vẽ hình thoi

Ta có thể vẽ được hình thoi khi biết độ dài một cạnh và độ dài một đường chéo bằng thước kẻ và compa.

Chẳng hạn, vẽ hình thoi ABCD biết AB = 5 cm và AC = 8 cm. 

Để vẽ hình thoi ABCD, ta làm như sau:

Bước 1. Dùng thước vẽ đoạn thẳng AC = 8 cm

Hình chữ nhật. Hình thoi | Lý thuyết Toán lớp 6 chi tiết Cánh diều

Bước 2. Dùng compa vẽ một phần đường tròn tâm A bán kính 5 cm

Hình chữ nhật. Hình thoi | Lý thuyết Toán lớp 6 chi tiết Cánh diều

Bước 3. Dùng compa vẽ một phần đường tròn tâm C bán kính 5 cm; phần đường tròn này cắt phần đường tròn tâm A vẽ ở Bước 2 tại các điểm B và D

Hình chữ nhật. Hình thoi | Lý thuyết Toán lớp 6 chi tiết Cánh diều

Bước 4. Dùng thước vẽ các đoạn thẳng AB, BC, CD, DA.

Hình chữ nhật. Hình thoi | Lý thuyết Toán lớp 6 chi tiết Cánh diều

Vậy ta được hình thoi ABCD thỏa mãn yêu cầu. 

3. Chu vi và diện tích hình thoi 

Cho hình thoi có độ dài cạnh là a và độ dài hai đường chéo là m và n, ta có:

– Chu vi của hình thoi là C = 4a;

– Diện tích của hình thoi là S =  12 . m . n. 

B. Bài tập tự luyện

Bài 1. Quan sát hình dưới và tính diện tích phần tô màu xanh ở hình đó.

Hình chữ nhật. Hình thoi | Lý thuyết Toán lớp 6 chi tiết Cánh diều

Lời giải: 

Kí hiệu trên hình vẽ đã cho, các điểm đỉnh như hình dưới đây:

Hình chữ nhật. Hình thoi | Lý thuyết Toán lớp 6 chi tiết Cánh diều

Khi đó, theo kí hiệu trên hình vẽ ta thấy:

AB = CD = CF = GH = DE = EF = 5 cm 

AD = BC = CG = HF = 2 cm 

CE = 3 + 3 = 6 cm 

DF = 4 + 4 = 8 cm 

Vì CD = DE = EF = CF nên CDEF là hình thoi với CE và DF là hai đường chéo 

Diện tích hình thoi CDEF là: 12.6.8=24 (cm2) 

Ta thấy ABCD và CGHF là hai hình chữ nhật có diện tích bằng nhau và có độ dài hai cạnh ở mỗi hình lần lượt là 2 cm và 5 cm.

Diện tích hình chữ nhật ABCD (hay CGHF) là: 2 . 5 = 10 (cm2)

Ta thấy diện tích phần tô màu xanh chính bằng tổng diện tích 2 hình chữ nhật ABCD, CGHF và diện tích hình thoi CDEF. 

Do đó, diện tích phần tô màu xanh trên Hình 20 là:

24 + 10 . 2 = 44 (cm2)

Vậy diện tích phần tô màu xanh trên Hình 20 là 44 cm2. 

Bài 2. Bác Hưng uốn một dây thép thành móc treo đồ có dạng hình thoi với độ dài cạnh bằng 30 cm. Bác Hưng cần bao nhiêu xăng-ti-mét dây thép để làm móc treo đó?

Lời giải: 

Độ dài dây thép để làm móc treo chính là chu vi của hình thoi có độ dài cạnh bằng 30 cm. 

Do đó bác Hưng cần số xăng-ti-mét dây thép để làm móc treo là:

4 . 30 = 120 (cm)

Vậy bác Hưng cần số xăng-ti-mét dây thép để làm móc treo là 120 cm.

Xem thêm các bài tóm tắt lý thuyết Toán 6 Cánh diều hay, chi tiết khác:

Bài 1: Tam giác đều. Hình vuông. Lục giác đều

Bài 3: Hình bình hành

Bài 4: Hình thang cân

Bài 5: Hình có trục đối xứng

Bài 6: Hình có tâm đối xứng

====== ****&**** =====

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Tìm đạo hàm cấp hai của hàm số sau: y = x1 + x2

Next post

Sách bài tập Toán 6 Bài 3 (Cánh diều): Hình bình hành

Bài liên quan:

Lý thuyết Tập hợp (Cánh diều 2023) hay, chi tiết | Toán lớp 6

Lý thuyết Tập hợp các số tự nhiên (Cánh diều 2023) hay, chi tiết | Toán lớp 6

Lý thuyết Phép cộng, phép trừ các số tự nhiên (Cánh diều 2023) hay, chi tiết | Toán lớp 6

Lý thuyết Phép nhân và phép chia các số tự nhiên (Cánh diều 2023) hay, chi tiết | Toán lớp 6

Lý thuyết Phép tính lũy thừa với số mũ tự nhiên (Cánh diều 2023) hay, chi tiết | Toán lớp 6

Lý thuyết Thứ tự thực hiện các phép tính (Cánh diều 2023) hay, chi tiết | Toán lớp 6

Lý thuyết Quan hệ chia hết. Tính chất chia hết (Cánh diều 2023) hay, chi tiết | Toán lớp 6

Lý thuyết Dấu hiệu chia hết cho 2, cho 5 (Cánh diều 2023) hay, chi tiết | Toán lớp 6

Leave a Comment Hủy

Mục lục

  1. Lý thuyết Tập hợp (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  2. Lý thuyết Tập hợp các số tự nhiên (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  3. Lý thuyết Phép cộng, phép trừ các số tự nhiên (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  4. Lý thuyết Phép nhân và phép chia các số tự nhiên (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  5. Lý thuyết Phép tính lũy thừa với số mũ tự nhiên (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  6. Lý thuyết Thứ tự thực hiện các phép tính (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  7. Lý thuyết Quan hệ chia hết. Tính chất chia hết (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  8. Lý thuyết Dấu hiệu chia hết cho 2, cho 5 (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  9. Lý thuyết Dấu hiệu chia hết cho 3, cho 9 (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  10. Lý thuyết Số nguyên tố. Hợp số (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  11. Lý thuyết Phân tích một số ra thừa số nguyên tố (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  12. Lý thuyết Ước chung và ước chung lớn nhất (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  13. Lý thuyết Bội chung và bội chung nhỏ nhất (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  14. Lý thuyết Toán lớp 6 Chương 1 (Cánh diều 2023): Số tự nhiên hay, chi tiết
  15. Lý thuyết Số nguyên âm (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  16. Lý thuyết Tập hợp các số nguyên (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  17. Lý thuyết Phép cộng các số nguyên (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  18. Lý thuyết Phép trừ số nguyên. Quy tắc dấu ngoặc (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  19. Lý thuyết Phép nhân các số nguyên (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  20. Lý thuyết Phép chia hết hai số nguyên. Quan hệ chia hết trong tập hợp số nguyên (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  21. Lý thuyết Toán lớp 6 Chương 2 (Cánh diều 2023): Số nguyên hay, chi tiết
  22. Lý thuyết Tam giác đều. Hình vuông. Lục giác đều (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  23. Lý thuyết Hình bình hành (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  24. Lý thuyết Hình thang cân (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  25. Lý thuyết Hình có trục đối xứng (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  26. Lý thuyết Hình có tâm đối xứng (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  27. Lý thuyết Đối xứng trong thực tiễn (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  28. Lý thuyết Toán lớp 6 Chương 3 (Cánh diều 2023): Hình học trực quan hay, chi tiết
  29. Lý thuyết Thu thập, tổ chức, biểu diễn, phân tích và xử lí dữ liệu (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  30. Lý thuyết Biểu đồ cột kép (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  31. Lý thuyết Mô hình xác suất trong một số trò chơi và thí nghiệm đơn giản (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  32. Lý thuyết Xác suất thực nghiệm trong một trò chơi và thí nghiệm đơn giản (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  33. Lý thuyết Toán lớp 6 Chương 4 (Cánh diều 2023): Một số yếu tố thống kê và xác suất hay, chi tiết
  34. Lý thuyết Phân số với tử và mẫu là số nguyên (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  35. Lý thuyết So sánh các phân số. Hỗn số dương (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  36. Lý thuyết Phép cộng. Phép trừ phân số (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  37. Lý thuyết Phép nhân, phép chia phân số (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  38. Lý thuyết Số thập phân (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  39. Lý thuyết Phép cộng, phép trừ số thập phân (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  40. Lý thuyết Phép nhân, phép chia số thập phân (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  41. Lý thuyết Ước lượng và làm tròn số (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  42. Lý thuyết Tỉ số. Tỉ số phần trăm (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  43. Lý thuyết Hai bài toán về phân số (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  44. Lý thuyết Toán lớp 6 Chương 5 (Cánh diều 2023): Phân số và số thập phân hay, chi tiết
  45. Lý thuyết Điểm. Đường thẳng (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  46. Lý thuyết Hai đường thẳng cắt nhau. Hai đường thẳng song song (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  47. Lý thuyết Đoạn thẳng (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  48. Lý thuyết Tia (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  49. Lý thuyết Góc (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  50. Lý thuyết Toán lớp 6 Chương 6 (Cánh diều 2023): Hình học phẳng hay, chi tiết

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán