Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Học Toán lớp 6 – Cánh Diều

Lý thuyết Phân tích một số ra thừa số nguyên tố (Cánh diều 2023) hay, chi tiết | Toán lớp 6

By admin 17/04/2023 0

Lý thuyết Toán lớp 6 Bài 11: Phân tích một số ra thừa số nguyên tố

Video giải Toán 6 Bài 11: Phân tích một số ra thừa số nguyên tố – Cánh diều

A. Lý thuyết Phân tích một số ra thừa số nguyên tố

I. Cách tìm một ước nguyên tố của một số 

Để tìm một ước nguyên tố của số tự nhiên n lớn hơn 1, ta có thể làm như sau: lần lượt thực hiện phép chia n cho các số nguyên tố theo thứ tự tăng dần 2, 3, 5, 7, 11, 13, …

Khi đó, phép chia hết đầu tiên cho ta số chia là một ước nguyên tố của n.

Ví dụ: Tìm một ước nguyên tố của 217.

Lời giải:

Theo dấu hiệu chia hết, số 217 không chia hết cho các số nguyên tố 2, 3, 5. Ta có: 217 = 7 . 31. Vì thế 7 là một ước nguyên tố của 217.

II. Phân tích một số ra thừa số nguyên tố

+ Phân tích một số tự nhiên lớn hơn 1 ta thừa số nguyên tố là viết số đó dưới dạng một tích các thừa số nguyên tố.

Lưu ý: Khi phân tích một số ra thừa số nguyên tố ta nên chia mỗi số trong khi phân tích cho ước nguyên tố nhỏ nhất của nó.

Cứ tiếp tục chia như thế cho đến khi được thương là 1.

+ Ta có thể phân tích một số ra thừa số nguyên tố bằng cách viết “rẽ nhánh” và “theo cột dọc”. 

Ví dụ: Phân tích số 40 ra thừa số nguyên tố bằng cách viết “rẽ nhánh” và “theo cột dọc”.

Lời giải:

+ Cách viết “rẽ nhánh”:

Lý thuyết Toán 6 Bài 11: Phân tích một số ra thừa số nguyên tố | Lý thuyết Toán lớp 6 chi tiết Cánh diều

Do đó: 40 = 2 . 2 . 2 . 5 = 23 . 5

+ Cách viết “theo cột dọc”:

Lý thuyết Toán 6 Bài 11: Phân tích một số ra thừa số nguyên tố | Lý thuyết Toán lớp 6 chi tiết Cánh diều 

Vậy ta phân tích được: 40 = 2 . 2 . 2 . 5 = 23 . 5. 

Chú ý:

+ Dạng phân tích ra thừa số nguyên tố của một số nguyên tố là chính số đó.

+ Mọi hợp số đều phân tích được ra thừa số nguyên tố.

+ Thông thường, khi phân tích một số tự nhiên ra thừa số nguyên tố, các ước nguyên tố được viết theo thứ tự tăng dần.

+ Ngoài cách làm như trên, ta cũng có thể phân tích một số ra thừa số nguyên tố bằng cách viết số đó thành tích của hai thừa số một cách linh hoạt.

Ví dụ: Phân tích số 450 ra thừa số nguyên tố. 

Ta có: 450 = 9 . 50 

Lý thuyết Toán 6 Bài 11: Phân tích một số ra thừa số nguyên tố | Lý thuyết Toán lớp 6 chi tiết Cánh diều

Vậy 450 = 3 . 3 . 2 . 5 . 5 = 2 . 32 . 52. 

Nhận xét: Dù phân tích một số ra thừa số nguyên tố bằng cách nào thì cuối cùng ta cũng được cùng một kết quả.

B. Bài tập tự luyện

Bài 1. Phân tích các số sau ra thừa số nguyên tố: 45, 270.

Lời giải:

Học sinh có thể phân tích bằng cách viết “rẽ nhánh” hoặc “theo cột dọc”.

Có thể trình bày như sau: 

+) Phân tích số 45 bằng cách viết “theo cột dọc”

Lý thuyết Toán 6 Bài 11: Phân tích một số ra thừa số nguyên tố | Lý thuyết Toán lớp 6 chi tiết Cánh diều 

Vậy 45 = 3 . 3. 5 = 32 . 5. 

+) Phân tích số 270 bằng cách viết “rẽ nhánh”:

Ta có: 270 = 10 . 27 

Lý thuyết Toán 6 Bài 11: Phân tích một số ra thừa số nguyên tố | Lý thuyết Toán lớp 6 chi tiết Cánh diều

Vậy 270 = 2 . 5 . 3 . 3. 3 = 2 . 33 . 5. 

Bài 2. 

a) Biết 400 = 24 . 52. Hãy viết 800 thành tích các thừa số nguyên tố.

b) Biết 2 700 = 22 . 33 . 52. Hãy viết 270 và 900 thành tích các thừa số nguyên tố.

Lời giải:

a) Ta có: 800 = 2 . 400 

Mà 400 = 24 . 52 

Do đó: 800 = 2 . (24 . 52) = (21 . 24). 52 = 24+1 . 52 = 25 . 52

Vậy 800 = 25 . 52. 

b) Ta có: 2 700 =  10 . 270 = 3 . 900

Mà 10 = 2 . 5 và 2 700 = 22 . 33 . 52 

Do đó: 270 = 2 700 : 10 = (22 . 33 . 52) : (2 . 5) = (22 : 2) . 33 . (52 : 5) = 2 . 33 . 5

900 = 2 700 : 3 = (22 . 33 . 52) : 3 = 22 . (33 : 3) . 52 = 22 . 32 .52

Vậy 270 = 2 . 33 . 5 và 900 = 22 . 32 .52.

Xem thêm các bài tóm tắt lý thuyết Toán 6 Cánh diều hay, chi tiết khác:

Bài 10: Số nguyên tố. Hợp số

Bài 12: Ước chung và ước chung lớn nhất

Bài 13: Bội chung và bội chung nhỏ nhất

Chương 1: Số tự nhiên hay, chi tiết

Bài 1: Số nguyên âm

====== ****&**** =====

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giải phương trình f′(x) = g(x), biết rằng f(x) = 12cos2x, g(x) = 1 – cos3x + sin3x2

Next post

Sách bài tập Toán 6 Bài 12 (Cánh diều): Ước chung và ước chung lớn nhất

Bài liên quan:

Lý thuyết Tập hợp (Cánh diều 2023) hay, chi tiết | Toán lớp 6

Lý thuyết Tập hợp các số tự nhiên (Cánh diều 2023) hay, chi tiết | Toán lớp 6

Lý thuyết Phép cộng, phép trừ các số tự nhiên (Cánh diều 2023) hay, chi tiết | Toán lớp 6

Lý thuyết Phép nhân và phép chia các số tự nhiên (Cánh diều 2023) hay, chi tiết | Toán lớp 6

Lý thuyết Phép tính lũy thừa với số mũ tự nhiên (Cánh diều 2023) hay, chi tiết | Toán lớp 6

Lý thuyết Thứ tự thực hiện các phép tính (Cánh diều 2023) hay, chi tiết | Toán lớp 6

Lý thuyết Quan hệ chia hết. Tính chất chia hết (Cánh diều 2023) hay, chi tiết | Toán lớp 6

Lý thuyết Dấu hiệu chia hết cho 2, cho 5 (Cánh diều 2023) hay, chi tiết | Toán lớp 6

Leave a Comment Hủy

Mục lục

  1. Lý thuyết Tập hợp (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  2. Lý thuyết Tập hợp các số tự nhiên (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  3. Lý thuyết Phép cộng, phép trừ các số tự nhiên (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  4. Lý thuyết Phép nhân và phép chia các số tự nhiên (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  5. Lý thuyết Phép tính lũy thừa với số mũ tự nhiên (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  6. Lý thuyết Thứ tự thực hiện các phép tính (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  7. Lý thuyết Quan hệ chia hết. Tính chất chia hết (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  8. Lý thuyết Dấu hiệu chia hết cho 2, cho 5 (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  9. Lý thuyết Dấu hiệu chia hết cho 3, cho 9 (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  10. Lý thuyết Số nguyên tố. Hợp số (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  11. Lý thuyết Ước chung và ước chung lớn nhất (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  12. Lý thuyết Bội chung và bội chung nhỏ nhất (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  13. Lý thuyết Toán lớp 6 Chương 1 (Cánh diều 2023): Số tự nhiên hay, chi tiết
  14. Lý thuyết Số nguyên âm (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  15. Lý thuyết Tập hợp các số nguyên (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  16. Lý thuyết Phép cộng các số nguyên (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  17. Lý thuyết Phép trừ số nguyên. Quy tắc dấu ngoặc (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  18. Lý thuyết Phép nhân các số nguyên (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  19. Lý thuyết Phép chia hết hai số nguyên. Quan hệ chia hết trong tập hợp số nguyên (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  20. Lý thuyết Toán lớp 6 Chương 2 (Cánh diều 2023): Số nguyên hay, chi tiết
  21. Lý thuyết Tam giác đều. Hình vuông. Lục giác đều (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  22. Lý thuyết Hình chữ nhật. Hình thoi (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  23. Lý thuyết Hình bình hành (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  24. Lý thuyết Hình thang cân (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  25. Lý thuyết Hình có trục đối xứng (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  26. Lý thuyết Hình có tâm đối xứng (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  27. Lý thuyết Đối xứng trong thực tiễn (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  28. Lý thuyết Toán lớp 6 Chương 3 (Cánh diều 2023): Hình học trực quan hay, chi tiết
  29. Lý thuyết Thu thập, tổ chức, biểu diễn, phân tích và xử lí dữ liệu (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  30. Lý thuyết Biểu đồ cột kép (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  31. Lý thuyết Mô hình xác suất trong một số trò chơi và thí nghiệm đơn giản (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  32. Lý thuyết Xác suất thực nghiệm trong một trò chơi và thí nghiệm đơn giản (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  33. Lý thuyết Toán lớp 6 Chương 4 (Cánh diều 2023): Một số yếu tố thống kê và xác suất hay, chi tiết
  34. Lý thuyết Phân số với tử và mẫu là số nguyên (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  35. Lý thuyết So sánh các phân số. Hỗn số dương (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  36. Lý thuyết Phép cộng. Phép trừ phân số (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  37. Lý thuyết Phép nhân, phép chia phân số (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  38. Lý thuyết Số thập phân (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  39. Lý thuyết Phép cộng, phép trừ số thập phân (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  40. Lý thuyết Phép nhân, phép chia số thập phân (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  41. Lý thuyết Ước lượng và làm tròn số (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  42. Lý thuyết Tỉ số. Tỉ số phần trăm (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  43. Lý thuyết Hai bài toán về phân số (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  44. Lý thuyết Toán lớp 6 Chương 5 (Cánh diều 2023): Phân số và số thập phân hay, chi tiết
  45. Lý thuyết Điểm. Đường thẳng (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  46. Lý thuyết Hai đường thẳng cắt nhau. Hai đường thẳng song song (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  47. Lý thuyết Đoạn thẳng (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  48. Lý thuyết Tia (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  49. Lý thuyết Góc (Cánh diều 2023) hay, chi tiết | Toán lớp 6
  50. Lý thuyết Toán lớp 6 Chương 6 (Cánh diều 2023): Hình học phẳng hay, chi tiết

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán