Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 12

Phương pháp giải về Phương trình, bất phương trình mũ và logarit 2023 (lý thuyết và bài tập)

By admin 07/10/2023 0

– Tóm tắt ngắn gọn kiến thức trọng tâm cần nhớ và một số bài tập cho từng dạng bài

Mời các quý thầy cô và các em học sinh cùng tham khảo và tải về chi tiết tài liệu dưới đây:

 

A. PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH – BPT MŨ – LOGARIT

1. Phương trình mũ

a. Phương trình mũ cơ bản.

    Phương trình mũ cơ bản có dạng: ax = m        (1).

        Nếu m > 0 thì phương trình (1) có nghiệm duy nhất x = logam.

        Nếu m ≤ 0 thì phương trình (1) vô nghiệm.

b. Phương pháp đưa về cùng cơ số.

    Với a > 0 và a ≠ 1 ta có af(x) = ag(x) ⇔ f(x) = g(x).

c. Phương pháp lôgarit hoá.

        af(x) = b ⇔ f(x) = logab

        af(x) = bg(x) ⇔ f(x) = g(x)logab

        logaf(x) = b ⇔ f(x) = ab

d. Phương pháp đặt ẩn phụ

Dạng 1: Phương trình αk + αk-1 a(k-1)x + … + α1 ax + α0 = 0

        Khi đó ta đặt t = ax điều kiện t > 0, ta được αk tk + αk-1 tk-1 + … + α1 t + α0 = 0

        Mở rộng: Nếu đặt t = af(x) , điều kiện hẹp t > 0.

        Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Dạng 2: Phương trình α1 ax + α2 ax + α3 = 0 với a.b = 1

        Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

        Mở rộng: Với a.b = 1 thì khi đặt t = af(x), điều kiện hẹp t > 0, suy ra Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Dạng 3: Phương trình α1 a2x + α2 (a.b)x + α3 b2x = 0 khi đó chia hai vế của phương trình cho b2x > 0 (hoặc a2x, (a.b)x), điều kiện t < 0, ta được

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

        Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải, điều kiện t < 0 , ta được α1 t2 + α2 t+α3 = 0

        Mở rộng: Với phương trình mũ có chứa các nhân tử: a2f, b2f, (a.b)2f, ta thực hiện theo các bước sau:

            + Chia 2 vế của phương trình cho b2f > 0 (hoặc a2f,(a.b)f)

            + Đặt Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải điều kiện hẹp t > 0

e. Phương pháp sử dụng tính đơn điệu

Hướng 1:

    • Bước 1. Chuyển phương trình về dạng f(x)=k.

    • Bước 2. Khảo sát sự biến thiên của hàm số f(x) trên D. Khẳng định hàm số đơn điệu

    • Bước 3. Nhận xét:

        + Với x = x0 ⇔ f(x) = f(x0) = k do đó x = x0 là nghiệm.

        + Với x > x0 ⇔ f(x) > f(x0) = k do đó phương trình vô nghiệm.

        + Với x < x0 ⇔ f(x) < f(x0) = k do đó phương trình vô nghiệm.

    • Bước 4. Kết luận vậy x = x0 là nghiệm duy nhất của phương trình.

Hướng 2:

    • Bước 1. Chuyển phương trình về dạng f(x) = g(x).

    • Bước 2. Khảo sát sự biến thiên của hàm số y = f(x) và y = g(x). Khẳng định hàm số y = f(x) là hàm số đồng biến còn y = g(x) là hàm số nghịch biến hoặc là hàm hằng.

    • Bước 3. Xác đinh x0 sao cho f(x0) = g(x0 .

    • Bước 4. Kết luận vậy x = x0 là nghiệm duy nhất của phương trình.

Hướng 3:

    • Bước 1. Chuyển phương trình về dạng f(u) = f(v).

    • Bước 2. Khảo sát sự biến thiên của hàm số y = f(x). Khẳng định hàm số đơn điệu.

    • Bước 3. Khi đó f(u) = f(v) ⇔ u = v.

2. Bất phương trình mũ

Bất phương trình mũ cơ bản có dạng ax > b (hoặc ax ≥ b, ax < b, ax ≤ b) với a > 0, a ≠ 1.

Ta xét bất phương trình có dạng ax > b.

    • Nếu b ≤ 0, tập nghiệm của bất phương trình là R, vì ax > b, ∀x ∈ R..

    • Nếu b > 0 thì bất phương trình tương đương với ax > alogab.

Với a > 1, nghiệm của bất phương trình là x > loga b.

Với 0 < a < 1, nghiệm của bất phương trình là x < loga b.

Ta minh họa bằng đồ thị sau:

    • Với a > 1, ta có đồ thị sau.

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

    • Với 0 < a < 1, ta có đồ thị sau.

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Lưu ý:

1. Dạng 1:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

2. Dạng 2:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

3. Dạng 3: af(x) > b(*)

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

4. Dạng 4: af(x) < b(**)

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Lưu ý: Khi giải bất phương trình mũ, ta cần chú ý đến tính đơn điệu của hàm số mũ.

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Tương tự với bất phương trình dạng:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Trong trường hợp cơ số a có chứa ẩn số thì:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Ta cũng thường sử dụng các phương pháp giải tương tự như đối với phương trình mũ:

    + Đưa về cùng cơ số.

    + Đặt ẩn phụ.

    + Sử dụng tính đơn điệu:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

3. Phương trình logarit

a. Định nghĩa

    Phương trình lôgarit là phương trình có chứa ẩn số trong biểu thức dưới dấu lôgarit.

b. Phương trình lôgarit cơ bản

    • loga x = b ⇔ x = ab (0 < a ≠ 1).

    • loga f(x) = loga g(x) Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

c. Phương pháp đưa về cùng cơ số

    * Bước 1. Tìm điều kiện của phương trình (nếu có).

    * Bước 2. Sử dụng định nghĩa và các tính chất của lôgarit để đưa các lôgarit có mặt trong phương trình về cùng cơ số.

    * Bước 3.Biến đổi phương trình về phương trình lôgarit cơ bản đã biết cách giải.

    * Bước 4. Kiểm tra điều kiện và kết luận.

d. Phương pháp mũ hóa

        loga f(x) = g(x) (0 < a ≠ 1) ⇔ f(x) = ag(x)

e. Phương pháp đặt ẩn phụ

Giải phương trình: f[logag(x)] = 0 (0 < a ≠ 1).

    • Bước 1: Đặt t = logag(x) (*).

    • Bước 2: Tìm điều kiện củat (nếu có).

    • Bước 3: Đưa về giải phương trình f(t) = 0 đã biết cách giải.

    •Bước 4: Thay vào (*) để tìm x.

f. Một số lưu ý quan trọng khi biến đổi

    1) logaf2(x) = 2loga|f(x)|

    2) logaf2k(x) = 2kloga|f(x)|

    3) logaf2k+1(x) = (2k+1)logaf(x)

    4) loga(f(x)g(x)) = loga|f(x)| + loga|g(x)|

4. Bất phương trình logarit

a. Phương trình logarit đơn giản

logax ≤ b Nghiệm
0 < a < 1 x ≥ ab
a > 1 0 < x ≤ ab
logax ≥ b Nghiệm
0 < a < 1 0 < x ≤ ab
a > 1 x ≥ ab

b. Phương pháp đưa về cùng cơ số

logaf(x) ≤ logag(x)
0 < a < 1 logaf(x) ≤ logag(x) ⇔ f(x) ≥ g(x) > 0
a > 1 logaf(x) ≤ logag(x) ⇔ 0 < f(x) ≤ g(x)
logaf(x) ≥ logag(x)
0 < a < 1 logaf(x) ≥ logag(x) ⇔ 0 < f(x) ≤ g(x)
a > 1 logaf(x) ≥ logag(x) ⇔ f(x) ≥ g(x) > 0

c. Phương pháp đặt ẩn phụ

Mục đích chính của phương pháp này là chuyển các bài toán đã cho về bất phương trình đại số quen thuộc, đặc biệt là các bất phương trình bậc hai hoặc hệ bất phương trình.

B. BÀI TẬP

Bài 1: Giải phương trình sau

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Hướng dẫn:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bài 2: Giải phương trình sau: (7+4√3)x-3(2-√3)x+2=0

Hướng dẫn:

Nhận xét rằng 7+4√3=(2+√3)2; (2+√3)(2-√3)=1

Do đó nếu đặt t=(2+√3)x điều kiện t > 0 thì (2-√3)x=1/t và (7+4√3)x = t2

Khi đó phương trình đã cho tương đương với

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Vậy phương trình có nghiệm x=0

Bài 3: Giải phương trình 2x2-x + 93-2x + x2 + 6 = 42x-3 + 3x – x2 + 5x (*).

Hướng dẫn:

Ta có: (*) ⇔ 2x2-x + 36-4x + x2 + 6 = 24x-6 + 3x-x2 + 5x.

        ⇔ 2x2-x + x2 – x – 3x-x2 = 24x-6 + 4x – 6 – 36-4x.

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

ta được 2u + u – 3-u = 2v + v – 3-v.

Xét hàm số:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

⇒ f'(t) là hàm số đồng biến trên R, mà f(u)=f(v) ⇔ u=v.

Ta có phương trình:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Vậy tập nghiệm của phương trình là: S={1;6}.

Bài 4: Giải bất phương trình sau 9x-1-36.3x-3+3 ≤ 0

Hướng dẫn:

Biến đổi bất phương trình (1) ta được

(1) ⇔ (3x-1)2-4.3x-1+3 ≤ 0 (2)

Đặt t = 3x-1 (t > 0), bất phương trình (2) trở thành t2-4t+3 ≤ 0 (3)

(3) ⇔ 1 ≤ t ≤ 3

Suy ra: 1 ≤ 3x-1 ≤ 3 ⇔ 0 ≤ x-1 ≤ 1 ⇔ 1 ≤ x ≤ 2

Vậy tập nghiệm của bất phương trình là S = [1;2]

Bài 5: Tập nghiệm của bất phương trình Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải là:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Hướng dẫn:

Vì 2/√5 < 1 nên bất phương trình tương đương với

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Vậy tập nghiệm của bất phương trình là (0;1/3]

Bài 6: Tập nghiệm của bất phương trình 3x.2x+1 ≥ 72 là:

A. x ∈ [2; +∞).        B. x ∈ (-∞; 2].

C. x ∈ (-∞; 2).        D. x ∈ (2; +∞).

Hướng dẫn : 

Ta có 3x.2x+1 ≥ 72 ⇔ 2.6x ≥ 72 ⇔ x ≥ 2

Bài 7: Giải phương trình log23 x – 4log3x + 3 = 0.

Hướng dẫn:

Điều kiện của phương trình là x > 0.

Đặt log3x = t. Khi đó phương trình đã cho trở thành

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Kết hợp với điều kiện, ta được tập nghiệm của phương trình đã cho là {3;27}.

Bài 8: Giải phương trình log(25x – 22x+1) = x.

Hướng dẫn:

log(25x-22x+1 )=x ⇔ 25x-22x+1=10x ⇔ 25x-2.4x=10x

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Kết hợp với điều kiện, ta được tập nghiệm của phương trình đã cho là Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bài 9: Giải bất phương trình sau

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Hướng dẫn:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bài 10: Giải bất phương trình sau

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Hướng dẫn:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Đặt t=log2x ≠ 0. Khi đó bất phương trình trở thành.

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Vậy tập nghiệm của bất phương trình là:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Xem thêm

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

20 câu Trắc nghiệm Kinh tế pháp luật 10 Bài 21 (Cánh diều) có đáp án 2023: Thực hiện pháp luật

Next post

Lý thuyết Kinh tế pháp luật 10 Bài 21 (Cánh diều): Thực hiện pháp luật

Bài liên quan:

50 Bài tập Sự đồng biến nghịch biến của hàm số (có đáp án)- Toán 12

Chuyên đề Tính đơn điệu của hàm số 2023 hay, chọn lọc

43 câu Trắc nghiệm Sự đồng biến, nghịch biến của hàm số có đáp án 2023 – Toán 12

264 bài tập trắc nghiệm chuyên đề chiều biến thiên của hàm số năm 2023

60 bài tập về Tính đơn điệu của hàm chứa dấu trị tuyệt đối có đáp án 2023

Phương pháp giải Tính đơn điệu của hàm số 2023 (lý thuyết và bài tập)

Xét tính đơn điệu của hàm số hợp có chứa tham số

Tính đồng biến, nghịch biến của hàm hợp thông qua bàng biến thiên và đồ thị

Leave a Comment Hủy

Mục lục

  1. 50 Bài tập Sự đồng biến nghịch biến của hàm số (có đáp án)- Toán 12
  2. Chuyên đề Tính đơn điệu của hàm số 2023 hay, chọn lọc
  3. 43 câu Trắc nghiệm Sự đồng biến, nghịch biến của hàm số có đáp án 2023 – Toán 12
  4. 264 bài tập trắc nghiệm chuyên đề chiều biến thiên của hàm số năm 2023
  5. 60 bài tập về Tính đơn điệu của hàm chứa dấu trị tuyệt đối có đáp án 2023
  6. Phương pháp giải Tính đơn điệu của hàm số 2023 (lý thuyết và bài tập)
  7. Xét tính đơn điệu của hàm số hợp có chứa tham số
  8. Tính đồng biến, nghịch biến của hàm hợp thông qua bàng biến thiên và đồ thị
  9. Tìm tham số M đề hàm số phân thức đồng biến, nghịch biến trên khoảng xác định
  10. Tìm tham số M để hàm số bậc ba đồng biến, nghịch biến trên R
  11. Tìm tham số M để hàm số bậc ba đồng biến, nghịch biến trên khoảng K cho trước
  12. Tìm khoảng đồng biến, nghịch biến bằng bảng biến thiên và đồ thị hàm số
  13. Dạng bài tập Tìm tham số m để hàm số đơn điệu trên tập xác định
  14. Dạng bài tập Tìm khoảng đồng biến và nghịch biến của hàm số
  15. 45 bài tập trắc nghiệm Tính đơn điệu của hàm số lớp 12 có đáp án 2023
  16. SBT Toán 12 Bài 1: Sự đồng biến, nghịch biến của hàm số | Giải SBT Toán lớp 12
  17. Giải Toán 12 Bài 1: Sự đồng biến, nghịch biến của hàm số
  18. 50 Bài tập Cực trị của hàm số (có đáp án)- Toán 12
  19. Phương pháp giải Cực trị của hàm số 2023 (lý thuyết và bài tập)
  20. 50 câu Trắc nghiệm Cực trị của hàm số có đáp án 2023 – Toán 12
  21. 50 bài tập trắc nghiệm cực trị hàm hợp có đáp án và lời giải chi tiết 2023
  22. 116 câu Trắc nghiệm Vận dụng – Vận dụng cao cực trị hàm chứa dấu giá trị tuyệt đối 2023
  23. Phương pháp giải Giá trị lớn nhất, giá trị nhỏ nhất của hàm số 2023 (lý thuyết và bài tập)
  24. Chuyên đề cực trị của hàm số
  25. Tìm M để đồ thị hàm số đạt cực trị tại các điểm A,B thỏa mãn điều kiện cho trước
  26. Cực trị hàm số, hàm số y=f(|x|)
  27. Cực trị hàm số trị tuyệt đối
  28. Dạng bài tập Cực trị có tham số
  29. Dạng bài tập Chứng minh về cực trị
  30. Giải Toán 12 Bài 2: Cực trị của hàm số
  31. 50 Bài tập Giá trị lớn nhất và giá trị nhỏ nhất của hàm số (có đáp án)- Toán 12
  32. Chuyên đề Giá trị lớn nhất, giá trị nhỏ nhất của hàm số 2022 hay, chọn lọc
  33. 50 Bài tập trắc nghiệm về GTLN – GTNN của hàm số chứa dấu giá trị tuyệt đối 2023
  34. Phương pháp giải về Giá trị lớn nhất, giá trị nhỏ nhất của hàm số 2023 (lý thuyết và bài tập)
  35. Chuyên đề Giá trị lớn nhất, giá trị nhỏ nhất – Ôn thi THPT Quốc gia
  36. Phương pháp giải Giá trị lớn nhất và nhỏ nhất của hàm số chứa dấu giá trị tuyệt đối 2023 (lý thuyết và bài tập)
  37. Bài toán tìm giá trị nhỏ nhất, giá trị lớn nhất có chứa tham số
  38. 29 câu Trắc nghiệm Giá trị lớn nhất, giá trị nhỏ nhất của hàm số có đáp án 2023 – Toán 12
  39. Dạng bài tập Ứng dụng thực tế của bài toán Min, Max có đáp án
  40. Giải Toán 12 Bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
  41. 50 Bài tập Đường tiệm cận (có đáp án)- Toán 12
  42. Các dạng bài tập trắc nghiệm về VDC đường tiệm cận của đồ thị hàm số
  43. 241 bài toán trắc nghiệm tiệm cận chứa tham số 2023
  44. Phương pháp giải Tiệm cận của đồ thị hàm số 2023 (lý thuyết và bài tập)
  45. Đường tiệm cận của đồ thị hàm số 2023 (lý thuyết và bài tập)
  46. Chuyên đề đường tiệm cận của đồ thị hàm số
  47. Tìm tham số M để đồ thị hàm số có tiệm cận
  48. Giải Toán 12 Bài 4: Đường tiệm cận
  49. 50 Bài tập Khảo sát sự biến thiên và vẽ đồ thị hàm số (có đáp án)- Toán 12
  50. Phương pháp giải Sự tương giao giữa hai đồ thị hàm số 2023 (lý thuyết và bài tập)
  51. Các dạng bài tâp về Đồ thị hàm số có đáp án
  52. Đồ thị hàm số chứa dấu giá trị tuyệt đối

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán