Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 7

20 Bài tập Tập hợp R các số thực có đáp án – Toán 7

By admin 22/10/2023 0

Bài tập Toán lớp 7 Bài 2: Tập hợp R các số thực

A. Bài tập Tập hợp R các số thực

A.1 Bài tập tự luận

Bài 1. So sánh

a) 217 và 2,142;

b) 3 và 8.

Hướng dẫn giải

a) Ta viết 217=157=2,142857142857… .Và so sánh với số 2,1420

Ta thấy kể từ trái sang phải, cặp chữ số cùng hàng đầu tiên khác nhau là cặp chữ số ở vị trí hàng phần chục nghìn.

Do 8 > 0 nên 2,142857142857…> 2,1420. Vậy 217 > 2,142.

b) Ta có 3 > 0 và 32 = 9 nên 9=3. Để so sánh 3 và 8 ta sẽ so sánh 9 và 8.

Ta có 9 > 8 > 0 nên 9 > 8. Suy ra 3 > 8.

Bài 2. Tìm số đối của mỗi số sau: −56 ; 1,25 ; 11 ; −3.

Hướng dẫn giải

Số đối của số thực −56 là: −−56=56.

Số đối của số thực 1,25 là –1,25.

Số đối của 11 là −11.

Số đối của số thực −3 là −(−3)=3.

A.2 Bài tập trắc nghiệm

Câu 1. Cho các phát biểu sau:

(I) Số thực dương lớn hơn số thực âm.

(II) Số 0 là số thực dương.

(III) Số thực dương là số tự nhiên.

(IV) Số nguyên âm là số thực.

Số phát biểu sai là:

A. 1;

B. 2;

C. 3;

D. 4.

Hướng dẫn giải

Đáp án đúng là: B.

(I) Số thực dương lớn hơn số thực âm. Đây là phát biểu đúng.

(II) Số 0 là số thực dương. Đây là phát biểu sai vì số 0 không là số thực dương cũng không là số thực âm.

(III) Số thực dương là số tự nhiên. Đây là phát biểu sai vì số thực dương có cả số hữu tỉ được viết dưới dạng số thập phân nhưng đây không phải là số tự nhiên.

(IV) Số nguyên âm là số thực. Đây là phát biểu đúng.

Vậy có hai phát biểu sai là (II) và (III).

Câu 2. Trên trục số nằm ngang, điểm M và N lần lượt biểu biễn hai số thực m và n. Nếu m < n thì:

A. Điểm M nằm bên trái điểm N;

B. Điểm M nằm bên phải điểm N;

C. Điểm M nằm phía dưới điểm N;

D. Điểm M nằm phía trên điểm N.

Hướng dẫn giải

Đáp án đúng là: A.

Trên trục số nằm ngang, điểm M và N lần lượt biểu biễn hai số thực m và n.

Nếu m < n thì điểm M nằm bên trái điểm N.

Câu 3. Sắp xếp các số −13;0,5;−2;2,1;−1 theo thứ tự tăng dần là:

A. −13;0,5;−2;2,1;−1;

B. −13;−2;−1;0,5;2,1;

C. −2;−1;−13;0,5;2,1;

D. −1;−2;−13;0,5;2,1.

Hướng dẫn giải

Đáp án đúng là: C.

Ta chia các số −13;  0,5;−2;2,1;−1 thành hai nhóm:

Nhóm 1: gồm các số thực âm −13;−2;−1.

Nhóm 2: gồm các số thực dương 0,5 và 2,1.

+) Ta so sánh nhóm 1: −13;−2;−1.

Có 1=33>13 nên −1<−13 

−2=−1,4142135… 

Ta xét hai số 1,4142135…và 1 thì có 1,4142135… > 1

Nên –1,4142135… < –1.

Do đó −2<−1<−13.

+) Ta so sánh nhóm 2: gồm hai số 0,5 và 2,1.

Kể từ trái sang phải, cặp chữ số cùng hàng đầu tiên khác nhau là cặp chữ số ở phần nguyên. Do 0 < 2 nên 0,5 < 2,1.

+) Nhóm 1 gồm các số thực âm, nhóm 2 gồm các số thực dương mà số thực dương luôn lớn hơn số thực âm.

Do đó ta có −2<−1<−13 < 0,5 < 2,1.

Vậy sắp xếp theo thứ tự tăng dần ta có: −2;−1;−13;0,5;2,1.

B. Lý thuyết Tập hợp R các số thực

1. Tập hợp số thực

1.1 Số thực

– Số hữu tỉ và số vô tỉ được gọi chung là số thực.

– Tập hợp các số thực được kí hiệu là ℝ.

Ví dụ: Các số 1,2 ; −53 ; 5 ; … là các số thực.

1.2 Biểu diễn thập phân của số thực

 – Mỗi số thực là số hữu tỉ hoặc số vô tỉ. Vì thế, mỗi số thực đều biểu diễn được dưới dạng số thập phân hữu hạn hoặc vô hạn. Ta có sơ đồ sau:

Tập hợp R các số thực (Lý thuyết + Bài tập Toán lớp 7) – Cánh diều (ảnh 1)

2. Biểu diễn số thực trên trục số

Tương tự như đối với số hữu tỉ, ta có thể biểu diễn mọi số thực trên trục số, khi đó điểm biểu diễn số thực x được gọi là điểm x.

Ví dụ: Biểu diễn các số thực sau trên trục số:

a) −12 và 2;

b) 2.

Hướng dẫn giải

a) Số −12 và 2 là hai số hữu tỉ, vì thế để biểu diễn hai số này trên trục số ta thực hiện như cách biểu diễn một số hữu tỉ trên trục số.

Tập hợp R các số thực (Lý thuyết + Bài tập Toán lớp 7) – Cánh diều (ảnh 1)

b) Số 2 là một số vô tỉ vì vậy để biểu diễn số 2 trên trục số ta làm như sau:

+ Vẽ một hình vuông với một cạnh là đoạn thẳng có hai đầu mút là điểm gốc 0 và điểm 1. Khi đó, đường chéo của hình vuông có độ dài cạnh bằng 2.

+ Vẽ một phần đường tròn tâm là điểm gốc 0, bán kính là 2, cắt trục số tại điểm A nằm bên phải gốc 0. Ta có OA = 2 và A là điểm biểu diễn 2.

Tập hợp R các số thực (Lý thuyết + Bài tập Toán lớp 7) – Cánh diều (ảnh 1)

Nhận xét:

– Không phải mỗi điểm trên trục số đều biểu diễn một số hữu tỉ. Vậy các điểm biểu diễn số hữu tỉ không lấp đầy trục số.

– Mỗi số thực được biểu diễn bởi một điểm trên trục số; Ngược lại, mỗi điểm trên trục số đều biểu diễn một số thực.

Vậy trục số còn được gọi là trục số thực.

Tập hợp R các số thực (Lý thuyết + Bài tập Toán lớp 7) – Cánh diều (ảnh 1)

3. Số đối của một số thực

– Trên trục số, hai số thực (phân biệt) có điểm biểu diễn nằm về hai phía của điểm gốc 0 và cách đều điểm gốc 0 được gọi là hai số đối nhau.

– Số đối của số thực a kí hiệu là – a.

– Số đối của số 0 là 0.

Nhận xét: Số đối của – a là số a, tức là –(–a) = a.

Ví dụ:

Tập hợp R các số thực (Lý thuyết + Bài tập Toán lớp 7) – Cánh diều (ảnh 1)

Số đối của số thực 2 là số thực −2.

4. So sánh các số thực

4.1 So sánh hai số thực

Cũng như số hữu tỉ, trong hai số thực khác nhau luôn có một số nhỏ hơn số kia.

– Nếu số thực a nhỏ hơn số thực b thì ta biết a < b hay b > a.

– Số thực lớn hơn 0 gọi là số thực dương.

– Số thực nhỏ hơn 0 gọi là số thực âm.

– Số 0 không phải là số thực dương cũng không phải số thực âm.

– Nếu a < b và b < c thì a < c.

4.2 Cách so sánh hai số thực

– Ta có thể so sánh hai số thực bằng cách biểu diễn thập phân mỗi số thực đó rồi so sánh hai số thập phân đó.

– Việc biểu diễn một số thực dưới dạng số thập phân (hữu hạn hoặc vô hạn) thường là phức tạp. Trong một số trường hợp ta dùng quy tắc: Với a, b là hai số thực dương, nếu a > b thì a>b.

Ví dụ: So sánh các số thực sau:

a) –1,(27) và –1,272;

b) 7 và 8.

Hướng dẫn giải

a) Ta viết –1,(27) = –1,27272727….. sau đó ta so sánh với –1,272.

Hai số –1,27272727… và –1,2720 có phần nguyên và đến hàng phần nghìn giống nhau, cặp chữ số khác nhau đầu tiên bắt đầu từ hàng phần chục nghìn.

Do 7 > 0 nên 1,27272727…..> 1,2720, suy ra  –1,27272727…..< –1,2720.

Vậy –1,(27) < –1,272.

b) Ta có: 0 < 7 < 8 nên 7 < 8.

4.3 Minh họa trên trục số

Giả sử hai điểm x, y lần lượt biểu diễn hai số thực x, y trên trục số nằm ngang. Ta có nhận xét sau :

– Nếu x < y hay y > x thì điểm x nằm bên trái điểm y;

– Ngược lại nếu điểm x nằm bên trái điểm y thì x < y hay y > x.

Đối với hai điểm x, y lần lượt biểu diễn hai số thực x, y trên trục số thẳng đứng, ta cũng có nhận xét sau :

– Nếu x < y hay y > x thì điểm x nằm phía dưới điểm y;

– Ngược lại, nếu điểm x nằm phía dưới điểm y thì x < y hay y > x.

Ví dụ:

Tập hợp R các số thực (Lý thuyết + Bài tập Toán lớp 7) – Cánh diều (ảnh 1)

+ Vì −32 < –1 nên trên trục số nằm ngang, điểm −32 nằm bên trái điểm –1.

+ Điểm 2 nằm bên trái điểm 5, vì vậy 2 < 5.

 

Tags : Tags Đại số   Giải bài tập   Tập hợp các số thực   toán 7
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Bài giảng điện tử Ngày-giờ, giờ-phút | Kết nối tri thức Giáo án PPT Toán lớp 2

Next post

50 Bài tập Trường hợp đồng dạng thứ ba của tam giác (có đáp án)- Toán 8

Bài liên quan:

20 câu Trắc nghiệm Tập hợp các số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7

Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

20 Bài tập Tập hợp các số hữu tỉ có đáp án – Toán 7

Giải sgk tất cả các môn lớp 7 Kết nối tri thức | Giải sgk các môn lớp 7 chương trình mới

Trọn bộ Trắc nghiệm Toán 7 Kết nối tri thức có đáp án

Giải sgk Toán 7 (cả 3 bộ sách) | Giải bài tập Toán 7 (hay, chi tiết)

Bài giảng điện tử Tập hợp các số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7

Bài giảng điện tử Toán 7 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 7

Leave a Comment Hủy

Mục lục

  1. 20 câu Trắc nghiệm Tập hợp các số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  2. Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  3. 20 Bài tập Tập hợp các số hữu tỉ có đáp án – Toán 7
  4. Giải sgk tất cả các môn lớp 7 Kết nối tri thức | Giải sgk các môn lớp 7 chương trình mới
  5. Trọn bộ Trắc nghiệm Toán 7 Kết nối tri thức có đáp án
  6. Giải sgk Toán 7 (cả 3 bộ sách) | Giải bài tập Toán 7 (hay, chi tiết)
  7. Bài giảng điện tử Tập hợp các số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7
  8. Bài giảng điện tử Toán 7 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 7
  9. Giáo án Toán 7 Bài 1 (Kết nối tri thức 2023): Tập hợp các số hữu tỉ
  10. Giáo án Toán 7 Kết nối tri thức (cả năm) mới nhất 2023
  11. Vở thực hành Toán 7 Kết nối tri thức | Giải VTH Toán 7 Tập 1, Tập 2 hay, chi tiết
  12. Vở thực hành Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  13. Lý thuyết Toán lớp 7 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 7 | Kết nối tri thức
  14. Sách bài tập Toán 7 Kết nối tri thức | SBT Toán 7 | Giải SBT Toán 7 | Giải sách bài tập Toán 7 hay nhất | Giải SBT Toán 7 Tập 1, Tập 2 | Giải SBT Toán lớp 7 Kết nối tri thức | SBT Toán 7 KNTT
  15. Giải sgk Toán 7 Kết nối tri thức | Giải Toán 7 | Giải Toán lớp 7 | Giải bài tập Toán 7 hay nhất | Giải Toán 7 Tập 1, Tập 2 Kết nối tri thức
  16. Sách bài tập Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  17. Giải SGK Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  18. 20 câu Trắc nghiệm Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  19. Lý thuyết Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  20. 21 Bài tập Cộng, trừ, nhân, chia số hữu tỉ có đáp án – Toán 7
  21. Bài giảng điện tử Cộng, trừ, nhân, chia số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7
  22. Giáo án Toán 7 Bài 2 (Kết nối tri thức 2023): Cộng, trừ, nhân, chia số hữu tỉ
  23. Vở thực hành Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  24. Sách bài tập Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  25. Giải SGK Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  26. Giáo án Toán 7 (Kết nối tri thức 2023): Luyện tập chung trang 14
  27. Vở thực hành Toán 7 (Kết nối tri thức): Luyện tập chung trang 11, 12, 13
  28. Giải SGK Toán 7 (Kết nối tri thức): Luyện tập chung trang 14
  29. 20 câu Trắc nghiệm Lũy thừa với số mũ tự nhiên của 1 số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  30. Lý thuyết Lũy thừa với số mũ tự nhiên của một số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  31. Vở thực hành Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ
  32. 20 Bài tập Lũy thừa với số mũ tự nhiên của một số hữu tỉ có đáp án – Toán 7
  33. Sách bài tập Toán 7 Bài 3 (Kết nối tri thức): Luỹ thừa với số mũ tự nhiên của một số hữu tỉ
  34. Giải SGK Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ
  35. 22 câu Trắc nghiệm Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  36. Lý thuyết Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  37. Bài giảng điện tử Thứ tự thực hiện các phép tính. Quy tắc chuyển vế | Kết nối tri thức Giáo án PPT Toán 7
  38. Giáo án Toán 7 Bài 4 (Kết nối tri thức 2023): Thứ tự thực hiện các phép tính. quy tắc chuyển vế
  39. Vở thực hành Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện phép tính. Quy tắc chuyển vế
  40. 20 Bài tập Thứ tự thực hiện các phép tính. Quy tắc chuyển vế có đáp án – Toán 7
  41. Sách bài tập Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  42. Giải SGK Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  43. Giáo án Toán 7 (Kết nối tri thức 2023): Luyện tập chung trang 23
  44. Vở thực hành Toán 7 (Kết nối tri thức): Luyện tập chung trang 19, 20, 21
  45. Toán lớp 7 (Kết nối tri thức) Luyện tập chung trang 23
  46. 32 câu Trắc nghiệm Toán lớp 7 Chương 1 (Kết nối tri thức) có đáp án: Số hữu tỉ
  47. Lý thuyết Toán 7 Chương 1 (Kết nối tri thức 2023): Số hữu tỉ hay, chi tiết
  48. Giáo án Toán 7 (Kết nối tri thức 2023): Bài tập cuối chương 1
  49. Vở thực hành Toán 7 (Kết nối tri thức): Bài ôn tập cuối chương 1
  50. 24 Bài tập Toán 7 Chương 1 có đáp án: Số hữu tỉ
  51. Sách bài tập Toán 7 (Kết nối tri thức): Ôn tập chương 1 trang 20, 21
  52. Giải SGK Toán 7 (Kết nối tri thức): Bài tập cuối chương 1

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán