Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 7

20 câu Trắc nghiệm Tính chất ba đường trung tuyến của tam giác (Cánh diều) có đáp án 2023 – Toán lớp 7

By admin 23/10/2023 0

Trắc nghiệm Toán 7 Bài 10: Tính chất ba đường trung tuyến của tam giác

Câu 1. Cho ∆ABC có hai đường trung tuyến BE và CF cắt nhau tại G. Biết BE = CF. Khẳng định nào sau đây đúng nhất?

A. ∆BCG cân tại G;

B. ∆ABC cân tại A;

C. AG ⊥ BC;

D. Cả A, B, C đều đúng.

Hướng dẫn giải

Đáp án đúng là: D

15 Bài tập Tính chất ba đường trung tuyến của tam giác (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Ta xét đáp án A:

Vì ∆ABC có hai đường trung tuyến BE và CF cắt nhau tại G nên G là trọng tâm tam giác ABC.

Do đó BG=23BE và CG=23CF (tính chất trọng tâm của tam giác)

Mà 23BE=23CF (do BE = CF).

Suy ra BG = CG.

Khi đó ta có ∆BCG cân tại G.

Do đó đáp án A đúng.

Ta xét đáp án B:

Xét ∆BFC và ∆CEB, có:

CF = BE (giả thiết).

GBC^=GCB^ (do ∆BCG cân tại G).

BC là cạnh chung.

Do đó ∆BFC = ∆CEB (c.g.c).

Suy ra FBC^=ECB^ (cặp góc tương ứng).

Khi đó ta có ∆ABC cân tại A.

Do đó đáp án B đúng.

Ta xét đáp án C:

Gọi D là giao điểm của AG và BC.

Ta suy ra D là trung điểm BC.

Do đó DB = DC.

Xét ∆ABD và ∆ACD, có:

AD là cạnh chung.

AB = AC (do ∆ABC cân tại A).

BD = CD (chứng minh trên)

Do đó ∆ABD = ∆ACD (c.c.c).

Suy ra ADB^=ADC^ (cặp góc tương ứng).

Mà ADB^+ADC^=180° (hai góc kề bù).

Suy ra ADB^=ADC^=180°:2=90°.

Khi đó AD ⊥ BC hay AG ⊥ BC.

Do đó đáp án C đúng.

Vậy ta chọn đáp án D.

Câu 2. Cho ∆ABC, đường trung tuyến AD. Trên tia đối của tia DA lấy điểm K sao cho DK=13AD. Qua B vẽ một đường thẳng song song với CK, cắt AC tại M. Gọi G là giao điểm của BM và AD. Khẳng định nào sau đây đúng?

A. DG=12AD;

B. MA < MC;

C. ∆BDG = ∆CDK;

D. BG > CK.

Hướng dẫn giải

Đáp án đúng là: C

15 Bài tập Tính chất ba đường trung tuyến của tam giác (có đáp án) | Cánh diều Trắc nghiệm Toán 7

∆ABC có đường trung tuyến AD nên D là trumg điểm của BC

Do đó DB = DC.

Xét ∆BDG và ∆CDK, có:

BD = CD (chứng minh trên)

BDG^=CDK^ (hai góc đối đỉnh).

GBD^=KCD^ (hai góc so le trong của BM // CK).

Do đó ∆BDG = ∆CDK (g.c.g).

Suy ra đáp án C đúng.

Ta có ∆BDG = ∆CDK (chứng minh trên).

Suy ra BG = CK và DG = DK = 13AD≠12AD.

Do đó đáp án A, D sai.

∆ABC có điểm G nằm trên đường trung tuyến AD.

Mà GD=13AD.

Nên G là trọng tâm của ∆ABC.

Lại có đường thẳng BM đi qua điểm G

Suy ra BM là đường trung tuyến của ∆ABC.

Khi đó M là trung điểm AC.

Suy ra MA = MC.

Do đó đáp án B sai.

Vậy ta chọn đáp án C.

Câu 3. Cho ∆ABC có hai đường trung tuyến BM, CN cắt nhau tại G.

So sánh tổng BM + CN và 32BC.

A. BM+CN>32BC;

B. BM+CN=32BC;

C. BM+CN<32BC;

D. Không thể so sánh được.

Hướng dẫn giải

Đáp án đúng là: A

15 Bài tập Tính chất ba đường trung tuyến của tam giác (có đáp án) | Cánh diều Trắc nghiệm Toán 7

∆ABC có hai đường trung tuyến BM và CN cắt nhau tại G.

Suy ra G là trọng tâm của ∆ABC.

Do đó BG=23BM, CG=23CN.

Khi đó BM=32BG, CN=32CG.

Xét tam giác BGC, theo bất đẳng thức trong tam giác ta có:

BG + CG > BC

Do đó 32BG+32CG>32BC

Hay BM+CN>32BC

Do đó ta chọn đáp án A.

Câu 4. Cho ∆ABC có hai đường trung tuyến BD, CE cắt nhau tại G. Trên tia đối của tia DB, lấy điểm M sao cho DM = DG. Trên tia đối của tia EG lấy điểm N sao cho EN = EG. Khẳng định nào sau đây đúng nhất?

A. BG = GM;

B. MN = BC;

C. MN // BC;

D. Cả A, B, C đều đúng.

Hướng dẫn giải

Đáp án đúng là: D

15 Bài tập Tính chất ba đường trung tuyến của tam giác (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Ta xét đáp án A:

Ta có DM = DG. Suy ra GM = 2GD.

Lại có G là giao điểm của hai trung tuyến BD và CE.

Suy ra G là trọng tâm của ∆ABC.

Do đó GDGB=12 (tính chất trọng tâm)

Nên GB = 2GD.

Khi đó ta có BG = 2GD = GM.

Do đó đáp án A đúng.

Ta xét đáp án B:

Chứng minh tương tự đáp án A, ta được CG = GN.

Xét ∆GMN và ∆GBC, có:

GM = GB (chứng minh trên).

CG = GN (chứng minh trên).

MGN^=BGC^ (hai góc đối đỉnh).

Do đó ∆GMN = ∆GBC (c.g.c).

Suy ra MN = BC (cặp cạnh tương ứng).

Do đó đáp án B đúng.

Ta xét đáp án C:

Ta có ∆GMN = ∆GBC (chứng minh trên).

Suy ra GMN^=GBC^ (cặp góc tương ứng).

Mà hai góc này ở vị trí so le trong.

Ta suy ra MN // BC.

Do đó đáp án C đúng.

Vậy ta chọn đáp án D.

Câu 5. Cho ∆ABC cân tại A có hai đường trung tuyến BD và CE cắt nhau tại G. Khẳng định nào sau đây đúng nhất?

A. BD = CE;

B. ∆GBC cân;

C. GD + GE > 12BC;

D. Cả A, B, C đều đúng.

Hướng dẫn giải

Đáp án đúng là: D

15 Bài tập Tính chất ba đường trung tuyến của tam giác (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Ta xét từng đáp án:

Đáp án A:

Ta có ∆ABC cân tại A nên AB = AC.

Mà AB = 2AE (E là trung điểm AB) và AC = 2AD (D là trung điểm AC).

Suy ra 2AE = 2AD hay AE = AD.

Xét ∆ADB và ∆AEC, có:

AB = AC (∆ABC cân tại A).

AE = AD (chứng minh trên).

BAC^ là góc chung.

Do đó ∆ADB = ∆AEC (c.g.c).

Suy ra BD = CE (cặp cạnh tương ứng).

Do đó đáp án A đúng.

Đáp án B:

Ta có G là trọng tâm của ∆ABC nên BG=23BD và CG=23CE.

Mà BD = CE (chứng minh trên).

Suy ra 23BD=23CE.

Do đó BG = CG.

Vậy ∆GBC cân tại G.

Do đó đáp án B đúng.

Đáp án C:

Vì G là trọng tâm tam giác ABC nên:

GD=12GB,GE=12GC

Do đó GD+GE=12BG+12CG=12BG+CG.

Mặt khác: BG + CG > BC (bất đẳng thức trong tam giác GCB).

Suy ra GB+GE>12BC (điều phải chứng minh).

Do đó đáp án C đúng.

Vậy ta chọn đáp án D.

Câu 6. Cho hình vẽ sau:

15 Bài tập Tính chất ba đường trung tuyến của tam giác (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Biết AM = 3 cm. Độ dài đoạn thẳng GM là:

A. 1 cm;

B. 2 cm;

C. 3 cm;

D. 4,5 cm.

Hướng dẫn giải

Đáp án đúng là: A

Trên hình vẽ, hai đường trung tuyến BN và CP cắt nhau tại G

Nên G là trọng tâm tam giác ABC

Do đó AG=23AM (tính chất trọng tâm)

Suy ra GM=13AM

Mà AM = 3 cm

Nên GM = 1 cm.

Vậy ta chọn phương án A.

Câu 7. Cho ∆ABC cân tại A, có AM là đường trung tuyến. Khẳng định nào sau đây sai?

A. ∆ABM = ∆ACM;

B. AM ⊥ BC;

C. MB = MC;

D. BAM^<CAM^.

Hướng dẫn giải

Đáp án đúng là: D

15 Bài tập Tính chất ba đường trung tuyến của tam giác (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Vì AM là đường trung tuyến của ∆ABC nên M là trung điểm BC.

Suy ra MB = MC.

Do đó đáp án C đúng.

Xét ∆ABM và ∆ACM, có:

AB = AC (do ∆ABC cân tại A).

AM là cạnh chung.

MB = MC (chứng minh trên).

Do đó ∆ABM = ∆ACM (c.c.c).

Suy ra đáp án A đúng.

Ta có ∆ABM = ∆ACM (chứng minh trên).

Suy ra BAM^=CAM^ và AMB^=AMC^ (các cặp góc tương ứng).

Do đó đáp án D sai.

Đến đây ta có thể chọn đáp án D.

Ta có AMB^+AMC^=180° (hai góc kề bù).

Suy ra 2AMB^=180°.

Do đó AMB^=180°:2=90°.

Khi đó AMB^=AMC^=90°.

Suy ra AM ⊥ BC.

Do đó đáp án B đúng.

Vậy ta chọn đáp án D.

Câu 8. Cho ∆ABC có ba đường trung tuyến AX, BY, CZ cắt nhau tại G. Biết GA = GB = GC. Hãy so sánh GX, GY và GZ.

A. GX > GY > GZ;

B. GX = GY = GZ;

C. GX < GY = GZ;

D. GX = GY > GZ.

Hướng dẫn giải

Đáp án đúng là: B

15 Bài tập Tính chất ba đường trung tuyến của tam giác (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Vì G là trọng tâm của ∆ABC nên theo tính chất trọng tâm ta có:

GXGA=12, GYGB=12, GZGC=12

Suy ra GX=12GA;GY=12GB;GZ=12GC

Mà GA = GB = GC.

Suy ra GX = GY = GZ.

Vậy ta chọn đáp án B.

Câu 9. Cho ∆ABC có đường trung tuyến AD. Trên đoạn thẳng AD lấy hai điểm E, G sao cho AG = GE = ED. Trọng tâm của ∆ABC là điểm:

A. B;

B. E;

C. G;

D. D.

Hướng dẫn giải

Đáp án đúng là: B

15 Bài tập Tính chất ba đường trung tuyến của tam giác (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Ta có AD = AG + GE + ED = AG + AG + AG = 3AG.

Suy ra AG = GE = ED = 13AD.

Ta có AE = AG + GE = 13AD+13AD=23AD.

Mà AD là đường trung tuyến của ∆ABC.

Do đó E là trọng tâm của ∆ABC.

Vậy ta chọn đáp án B.

Câu 10. Cho ∆ABC đều có ba đường trung tuyến AD, BE, CF cắt nhau tại G. Đoạn thẳng BE bằng với đoạn thẳng nào trong các đoạn thẳng sau:

A. AD;

B. CF;

C. AB;

D. Cả A, B đều đúng.

Hướng dẫn giải

Đáp án đúng là: D

15 Bài tập Tính chất ba đường trung tuyến của tam giác (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Ta có BE, CF là hai đường trung tuyến của ∆ABC.

Nên E, F lần lượt là trung điểm của AC và AB

Suy ra CE = 12AC và BF = 12AB.

Mà AB = AC (do ∆ABC đều).

Do đó 12AB=12AC.

Khi đó ta có CE = BF.

Xét ∆BCE và ∆CBF, có:

BC là cạnh chung.

CE = BF (chứng minh trên).

FBC^=ECB^ (do ∆ABC đều).

Do đó ∆BCE = ∆CBF (c.g.c).

Suy ra BE = CF (hai cạnh tương ứng).

Chứng minh tương tự, ta được AD = BE.

Suy ra BE = AD = CF.

Do đó đáp án A, B đều đúng.

Đáp án C sai vì:

Xét ∆ABD và ∆ACD, có:

AD là cạnh chung.

BD = CD (AD là đường trung tuyến của ∆ABC).

AB = AC (∆ABC đều).

Do đó ∆ABD = ∆ACD (c.c.c).

Suy ra ADB^=ADC^ (cặp góc tương ứng).

Mà ADB^+ADC^=180° (hai góc kề bù).

Do đó ADB^=ADC^=180°:2=90°.

Khi đó ta có AD ⊥ BC.

Do đó đoạn thẳng AD là đường vuông góc kẻ từ điểm A đến đường thẳng BC và AB là một đường xiên kẻ từ điểm A đến đường thẳng BC.

Suy ra AD < AB.

Do đó đáp án C sai.

Vậy ta chọn đáp án D.

Câu 11. Cho ∆ABC, D là trung điểm của AC. Trên cạnh BD lấy điểm E sao cho BE = 2ED. Lấy điểm F thuộc tia đối của tia DE sao cho BF = 2BE. Gọi K là trung điểm của CF và G là giao điểm của EK với AC. Khẳng định nào sau đây đúng nhất?

A. G là trọng tâm của ∆EFC;

B. GEGK=2;

C. GCDC=23;

D. Cả A, B, C đều đúng.

Hướng dẫn giải

Đáp án đúng là: D

15 Bài tập Tính chất ba đường trung tuyến của tam giác (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Ta có BF = 2BE (giả thiết). Suy ra BE = EF.

Mà BE = 2ED nên EF = 2ED.

Do đó ED = DF.

Suy ra D là trung điểm của EF.

Khi đó CD là đường trung tuyến của ∆CEF.

Vì K là trung điểm CF (giả thiết).

Nên EK cũng là đường trung tuyến của ∆CEF.

∆CEF có hai đường trung tuyến CD và EK cắt nhau tại G.

Khi đó G là trọng tâm của ∆CEF.

Do đó đáp án A đúng.

Vì G là trọng tâm của ∆CEF nên GCDC=23 và GKGE=12 (tính chất trọng tâm)

Do đó đáp án C đúng.

Ta có GKGE=12

Suy ra GEGK=2.

Do đó đáp án B đúng.

Vậy ta chọn đáp án D.

Câu 12. Cho ∆ABC. Trên cạnh BC lấy điểm G sao cho BG = 2GC. Lấy điểm D sao cho C là trung điểm của AD. Gọi E là trung điểm BD. Khẳng định nào sau đây sai?

A. G là trọng tâm của ∆ABD;

B. G là trung điểm của AE;

C. Ba điểm A, G, E thẳng hàng;

D. Đường thẳng DG đi qua trung điểm của đoạn thẳng AB.

Hướng dẫn giải

Đáp án đúng là: B

15 Bài tập Tính chất ba đường trung tuyến của tam giác (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Ta xét từng đáp án:

Đáp án A:

Ta có GB = 2GC.

Suy ra GB = 2(BC – BG).

Do đó GB = 2BC – 2GB.

Khi đó 3GB = 2BC.

Vậy GB=23BC.

∆ABD có C là trung điểm của AD.

Suy ra BC là đường trung tuyến của ∆ABD.

Mà G ∈ BC và GB=23BC.

Nên G là trọng tâm của ∆ABD.

Do đó đáp án A đúng.

Đáp án B:

Ta có AE là đường trung tuyến của ∆ABD.

Do đó G ∈ AE và AG=23AE.

Suy ra G không là trung điểm của AE.

Do đó đáp án B sai.

Đến đây ta có thể chọn đáp án B.

Đáp án C:

Ở đáp án B, ta đã chứng minh được G ∈ AE.

Nên ba điểm A, G, E thẳng hàng.

Do đó đáp án C đúng.

Đáp án D:

Ta có G là trọng tâm ∆ABD (chứng minh trên).

Suy ra DG là đường trung tuyến của ∆ABD.

Khi đó DG đi qua trung điểm của AB.

Do đó đáp án D đúng.

Vậy ta chọn đáp án B.

Câu 13. Cho ∆ABC có G là trọng tâm như hình bên.

15 Bài tập Tính chất ba đường trung tuyến của tam giác (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Tìm x, biết AG = 4x + 6 và AM = 9x.

A. x = 4;

B. x = 1;

C. x = 2;

D. x = 3.

Hướng dẫn giải

Đáp án đúng là: D

Ta có G là trọng tâm của ∆ABC.

Suy ra AG=23AM.

Do đó 4x+6=23.9x

4x + 6 = 2.3x

4x + 6 = 6x

4x – 6x = –6

–2x = –6.

x = –6 : (–2)

x = 3.

Vậy ta chọn đáp án D.

Câu 14. Cho ∆ABC có AD, BE, CF là ba đường trung tuyến và trọng tâm G. Đẳng thức nào sau đây đúng?

A. AD+BE+CF>34AB+BC+CA;

B. AD+BE+CF=34AB+BC+CA;

C. AD + BE + CF < AB + BC + AC;

D. Đáp án A, C đúng.

Hướng dẫn giải

Đáp án đúng là: D

15 Bài tập Tính chất ba đường trung tuyến của tam giác (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Ta xét đáp án A, B:

Vì G là trọng tâm của ∆ABC nên ta có GB=23BE và GC=23CF.

∆GBC có GB + GC > BC (bất đẳng thức tam giác).

Suy ra 23BE+23CF>BC.

Do đó 23BE+CF>BC.

Khi đó BE+CF>32BC (1).

Chứng minh tương tự ta được:

+) AD+BE>32AB (2).

+) AD+CF>32AC (3).

Lấy (1) + (2) + (3) vế theo vế, ta được:

2AD+2BE+2CF>32AB+32BC+32AC

Suy ra 2AD+BE+CF>32AB+BC+CA.

Do đó AD+BE+CF>34AB+BC+CA.

Vậy đáp án A đúng, đáp án B sai.

Ta xét đáp án C:

Trên tia AD, lấy điểm A’ sao cho DA’ = DA.

Xét ∆ADB và ∆A’DC, có:

DA = DA’.

BD = CD (do AD là đường trung tuyến của ∆ABC).

ADB^=A‘DB^ (hai góc đối đỉnh).

Do đó ∆ADB = ∆A’DC (c.g.c).

Suy ra AB = A’C (cặp cạnh tương ứng).

Áp dụng bất đẳng thức tam giác cho ∆AA’C, ta được: AA’ < AC + A’C.

Suy ra AA’ < AC + AB hay 2AD < AC + AB (4).

Chứng minh tương tự, ta được:

+) 2BE < AB + BC (5).

+) 2CF < AC + BC (6).

Lấy (4) + (5) + (6) vế theo vế, ta được: 2AD + 2BE + 2CF < 2AC + 2AB + 2BC.

Suy ra 2(AD + BE + CF) < 2(AB + AC + BC).

Do đó AD + BE + CF < AB + AC + BC.

Vậy đáp án C đúng.

Vậy ta chọn đáp án D.

Câu 15. Cho ∆ABC, hai đường trung tuyến BM và CN cắt nhau tại G. Trên tia GB và GC lấy các điểm F và E sao cho G là trung điểm của FM, đồng thời là trung điểm của EN. Khẳng định nào sau đây sai?

A. GF = FB;

B. E là trung điểm GC;

C. NG > EC;

D. AD, BE, CF đồng quy tại một điểm.

Hướng dẫn giải

Đáp án đúng là: C

15 Bài tập Tính chất ba đường trung tuyến của tam giác (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Do ∆ABC có hai đường trung tuyến BM và CN cắt nhau tại G nên G là trọng tâm của ∆ABC

Suy ra GM=12GB

Mà G là trung điểm của FM nên GM = GF

Do đó GF=12GB

Suy ra F là trung điểm của GB.

Nên GF = FB. Do đó A đúng.

Chứng minh tương tự ta có E là trung điểm của GC. Do đó B đúng.

Ta có: GN = GE = EC nên C là sai.

Vì F, E lần lượt là trung điểm của GB và GC (chứng minh trên)

Nên CF, BE là hai đường trung tuyến của ∆GBC.

Mà ∆GBC còn có GD là đường trung tuyến thứ ba (D là trung điểm BC).

Khi đó GD, BE, CF đồng quy tại trọng tâm của ∆GBC.

Hay AD, BE, CF đồng quy tại một điểm.

Do đó đáp án D đúng.

Vậy ta chọn đáp án C.

Xem thêm các bài trắc nghiệm Toán 7 Cánh diều hay, chi tiết khác:

Trắc nghiệm Toán 7 Bài 9: Đường trung trực của một đoạn thẳng

Trắc nghiệm Toán 7 Bài 10: Tính chất ba đường trung tuyến của tam giác

Trắc nghiệm Toán 7 Bài 11: Tính chất ba đường phân giác của tam giác

Trắc nghiệm Toán 7 Bài 12: Tính chất ba đường trung trực của tam giác

Trắc nghiệm Toán 7 Bài 13: Tính chất ba đường cao của tam giác

Tags : Tags Tính chất ba đường trung tuyến của tam giác   toán 7   Trắc nghiệm toán 7
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giải SGK Toán lớp 2 Tập 1 trang 59: Phép trừ có hiệu bằng 10 | Chân trời sáng tạo

Next post

Lý thuyết Phép trừ trong phạm vi 100 000 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 3

Bài liên quan:

20 câu Trắc nghiệm Tập hợp các số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7

Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

20 Bài tập Tập hợp các số hữu tỉ có đáp án – Toán 7

Giải sgk tất cả các môn lớp 7 Kết nối tri thức | Giải sgk các môn lớp 7 chương trình mới

Trọn bộ Trắc nghiệm Toán 7 Kết nối tri thức có đáp án

Giải sgk Toán 7 (cả 3 bộ sách) | Giải bài tập Toán 7 (hay, chi tiết)

Bài giảng điện tử Tập hợp các số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7

Bài giảng điện tử Toán 7 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 7

Leave a Comment Hủy

Mục lục

  1. 20 câu Trắc nghiệm Tập hợp các số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  2. Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  3. 20 Bài tập Tập hợp các số hữu tỉ có đáp án – Toán 7
  4. Giải sgk tất cả các môn lớp 7 Kết nối tri thức | Giải sgk các môn lớp 7 chương trình mới
  5. Trọn bộ Trắc nghiệm Toán 7 Kết nối tri thức có đáp án
  6. Giải sgk Toán 7 (cả 3 bộ sách) | Giải bài tập Toán 7 (hay, chi tiết)
  7. Bài giảng điện tử Tập hợp các số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7
  8. Bài giảng điện tử Toán 7 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 7
  9. Giáo án Toán 7 Bài 1 (Kết nối tri thức 2023): Tập hợp các số hữu tỉ
  10. Giáo án Toán 7 Kết nối tri thức (cả năm) mới nhất 2023
  11. Vở thực hành Toán 7 Kết nối tri thức | Giải VTH Toán 7 Tập 1, Tập 2 hay, chi tiết
  12. Vở thực hành Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  13. Lý thuyết Toán lớp 7 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 7 | Kết nối tri thức
  14. Sách bài tập Toán 7 Kết nối tri thức | SBT Toán 7 | Giải SBT Toán 7 | Giải sách bài tập Toán 7 hay nhất | Giải SBT Toán 7 Tập 1, Tập 2 | Giải SBT Toán lớp 7 Kết nối tri thức | SBT Toán 7 KNTT
  15. Giải sgk Toán 7 Kết nối tri thức | Giải Toán 7 | Giải Toán lớp 7 | Giải bài tập Toán 7 hay nhất | Giải Toán 7 Tập 1, Tập 2 Kết nối tri thức
  16. Sách bài tập Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  17. Giải SGK Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  18. 20 câu Trắc nghiệm Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  19. Lý thuyết Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  20. 21 Bài tập Cộng, trừ, nhân, chia số hữu tỉ có đáp án – Toán 7
  21. Bài giảng điện tử Cộng, trừ, nhân, chia số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7
  22. Giáo án Toán 7 Bài 2 (Kết nối tri thức 2023): Cộng, trừ, nhân, chia số hữu tỉ
  23. Vở thực hành Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  24. Sách bài tập Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  25. Giải SGK Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  26. Giáo án Toán 7 (Kết nối tri thức 2023): Luyện tập chung trang 14
  27. Vở thực hành Toán 7 (Kết nối tri thức): Luyện tập chung trang 11, 12, 13
  28. Giải SGK Toán 7 (Kết nối tri thức): Luyện tập chung trang 14
  29. 20 câu Trắc nghiệm Lũy thừa với số mũ tự nhiên của 1 số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  30. Lý thuyết Lũy thừa với số mũ tự nhiên của một số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  31. Vở thực hành Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ
  32. 20 Bài tập Lũy thừa với số mũ tự nhiên của một số hữu tỉ có đáp án – Toán 7
  33. Sách bài tập Toán 7 Bài 3 (Kết nối tri thức): Luỹ thừa với số mũ tự nhiên của một số hữu tỉ
  34. Giải SGK Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ
  35. 22 câu Trắc nghiệm Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  36. Lý thuyết Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  37. Bài giảng điện tử Thứ tự thực hiện các phép tính. Quy tắc chuyển vế | Kết nối tri thức Giáo án PPT Toán 7
  38. Giáo án Toán 7 Bài 4 (Kết nối tri thức 2023): Thứ tự thực hiện các phép tính. quy tắc chuyển vế
  39. Vở thực hành Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện phép tính. Quy tắc chuyển vế
  40. 20 Bài tập Thứ tự thực hiện các phép tính. Quy tắc chuyển vế có đáp án – Toán 7
  41. Sách bài tập Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  42. Giải SGK Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  43. Giáo án Toán 7 (Kết nối tri thức 2023): Luyện tập chung trang 23
  44. Vở thực hành Toán 7 (Kết nối tri thức): Luyện tập chung trang 19, 20, 21
  45. Toán lớp 7 (Kết nối tri thức) Luyện tập chung trang 23
  46. 32 câu Trắc nghiệm Toán lớp 7 Chương 1 (Kết nối tri thức) có đáp án: Số hữu tỉ
  47. Lý thuyết Toán 7 Chương 1 (Kết nối tri thức 2023): Số hữu tỉ hay, chi tiết
  48. Giáo án Toán 7 (Kết nối tri thức 2023): Bài tập cuối chương 1
  49. Vở thực hành Toán 7 (Kết nối tri thức): Bài ôn tập cuối chương 1
  50. 24 Bài tập Toán 7 Chương 1 có đáp án: Số hữu tỉ
  51. Sách bài tập Toán 7 (Kết nối tri thức): Ôn tập chương 1 trang 20, 21
  52. Giải SGK Toán 7 (Kết nối tri thức): Bài tập cuối chương 1

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán