Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 7

20 câu Trắc nghiệm Trường hợp bằng nhau thứ nhất của tam giác: cạnh – cạnh – cạnh (Cánh diều) có đáp án 2023 – Toán lớp 7

By admin 23/10/2023 0

Trắc nghiệm Toán 7 Bài 4: Trường hợp bằng nhau thứ nhất của tam giác: cạnh – cạnh – cạnh

Câu 1. Cho hình vẽ bên dưới:

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Biết AB=AD, B^=D^=90°,BAC^=60°. Số đo góc ACD là:

A. 20°;

B. 30°;

C. 40°;

D. 60°.

Hướng dẫn giải

Đáp án đúng là: B

Xét ∆ABC và ∆ADC có:

ABC^=ADC^=90°

AB = AD (giả thiết),

AC là cạnh chung

Do đó ∆ABC = ∆ADC (cạnh huyền – cạnh góc vuông)

Suy ra ACB^=ACD^ (cặp góc tương ứng)

Xét ∆ABC vuông tại B có: BAC^+BCA^=90° (trong tam giác vuông, hai góc nhọn phụ nhau)

Suy raBCA^=90°–BAC^=90°–60°=30°

Mà ACB^=ACD^ (chứng minh trên)

Do đó ACD^=30°

Vậy số đo góc ACD là 30°.

Câu 2. Cho hình vẽ bên dưới:

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Số đo góc C và góc M lần lượt là:

A. 45° và 65°;

B. 65° và 45°;

C. 55° và 70°;

D. 70° và 55°.

Hướng dẫn giải

Đáp án đúng là: A

Xét tam giác ABC và tam giác MNP có:

AB = MN, BC = NP, AC = MP (giả thiết)

Suy ra ∆ABC = ∆MNP (c.c.c)

Do đó A^=M^,B^=N^,C^=P^ (các cặp góc tương ứng)

Mà A^=65°, N^=70° nên M^=65°,B^=70°

Xét tam giác ABC có: B^+C^+A^=180° (tổng ba góc trong một tam giác)

Suy ra C^=180°–B^–A^

Hay C^=180°–70°–65°=45°

Vậy số đo góc C và góc M lần lượt là: 45° và 65°.

Câu 3. Cho hình vẽ bên dưới:

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Số đo của KAB^ trong hình vẽ trên bằng:

A. 50°;

B. 40°;

C. 30°;

D. 20°.

Hướng dẫn giải

Đáp án đúng là: D

Xét tam giác ABH và tam giác ABK có:

AH = AK, BH = BK, AB là cạnh chung

Suy ra ∆ABH = ∆ABK (c.c.c)

Do đó H^=K^ (cặp góc tương ứng)

Mà H^=120° nên K^=120°

Xét tam giác ABK có: BAK^+K^+ABK^=180° (tổng ba góc trong một tam giác)

Suy ra BAK^=180°–K^–ABK^

Hay BAK^=180°–120°–40°=20°

Vậy số đo của BAK^ bằng 20°.

Câu 4. Cho hình vẽ bên dưới:

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Số cặp tam giác bằng nhau theo trường hợp cạnh – cạnh – cạnh là:

A. 1;

B. 2;

C. 3;

D. 4.

Hướng dẫn giải

Đáp án đúng là: C

+) Xét ∆MNP và ∆MQP có:

MN = MQ, NP = QP, MP là cạnh chung

Suy ra ∆MNP = ∆MQP (c.c.c)

+) Xét ∆NPO và ∆QPO có:

NP = QP, NO = QO, PO là cạnh chung

Suy ra ∆NPO = ∆QPO (c.c.c)

+) Xét ∆MNO và ∆MQO có:

MN = MQ, NO = QO, MO là cạnh chung

Suy ra ∆MNO = ∆MQO (c.c.c)

Vậy trong hình vẽ trên có 3 cặp tam giác bằng nhau theo trường hợp cạnh – cạnh – cạnh.

Câu 5. Cho hình vẽ bên dưới:

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Khẳng định nào sau đây là sai?

A. BAC^=100° và AD // BC;

B. BAC^=100° và AD không song song với BC;

C. BAC^=100° và AB // DC;

D. ∆ABC = ∆CDA.

Hướng dẫn giải

Đáp án đúng là: B

• Xét ∆ABC và ∆ACD có:

AB = CD, BC = DA, AC là cạnh chung

Suy ra ∆ABC = ∆CDA (c.c.c)

Do đó phương án D là đúng.

• Vì ∆ABC = ∆CDA (chứng minh trên)

Nên BAC^=DCA^ (hai góc tương ứng)

Mà DCA^=100°

Nên BAC^=100°

Mặt khác: ∆ABC = ∆CDA (chứng minh trên)

Suy ra DAC^=BCA^ (hai góc tương ứng)

Mà hai góc này ở vị trí so le trong

Do đó AD // BC (dấu hiệu nhận biết).

Vậy A là đúng

•Ta có BAC^=DCA^ (chứng minh trên)

Mà hai góc này ở vị trí so le trong

Do đó AB // DC (dấu hiệu nhận biết). Vậy C là đúng

Vậy ta chọn đáp án B.

Câu 6. Cho hình vẽ sau:

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Số đo của BAC^ trong hình vẽ trên bằng:

A. 20°;

B. 40°;

C. 80°;

D. 120°.

Hướng dẫn giải

Đáp án đúng là: C

Vì AH⊥BCnên AHB^=AHC^=90°

Xét ∆ABH và ∆ACH có:

AHB^=AHC^=90° (chứng minh trên),

AB = AC (giả thiết),

AH là cạnh chung

Do đó ∆ABH = ∆ACH (cạnh huyền – cạnh góc vuông)

Suy ra BAH^=CAH^ (cặp góc tương ứng)

Mà BAH^=40° nên CAH^=40°

Ta có BAC^=BAH^+CAH^

Suy ra BAC^=40°+40°=80°

Vậy số đo góc BAC là 80°.

Câu 7. Xét bài toán “∆IAB và ∆IAC có AB = AC, IB = IC (điểm I nằm ngoài tam giác ABC). Chứng minh rằng AIB^=AIC^.”

Cho các câu sau:

(1) “AB = AC (giả thiết),

IB = IC (giả thiết),

IA là cạnh chung”;

(2) “Suy ra ∆IAB = ∆IAC (c.c.c)”;

(3) “Do đó AIB^=AIC^ (hai góc tương ứng)”;

(4) “Xét ∆IAB và ∆IAC có:”.

Hãy sắp xếp một cách hợp lí các câu trên để giải bài toán.

A. (2), (4), (1); (3);

B. (4), (2), (1), (3);

C. (1), (2), (3), (4);

D. (4), (1), (2), (3).

Hướng dẫn giải

Đáp án đúng là: D

Ta đi chứng minh AIB^=AIC^ như sau:

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Xét ∆IAB và ∆IAC có:

AB = AC (giả thiết),

IB = IC (giả thiết),

IA là cạnh chung;

Suy ra ∆IAB = ∆IAC (c.c.c);

Do đó AIB^=AIC^ (hai góc tương ứng).

Vậy ta chọn phương án D.

Câu 8. Cho hình vẽ sau:

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Khẳng định nào sau đây là đúng ?

A. ∆ABC = ∆ADC;

B. ∆ABC = ∆ACD;

C. ∆ACB = ∆ADC;

D. ∆BCA = ∆DAC.

Hướng dẫn giải

Đáp án đúng là: A

Xét tam giác ABC và tam giác CDA có:

AB = AD, BC = DC, AC là cạnh chung

Suy ra ∆ABC = ∆ADC (c.c.c)

Vậy ∆ABC = ∆ADC hay ta có thể kí hiệu ∆ACB = ∆ACD hoặc ∆BCA = ∆DCA.

Do đó ta chọn phương án A.

Câu 9. Cho tam giác ABC có AB = AC, I là trung điểm của BC. Biết ABC^=80°, số đo của CAI^ là:

A. 40°;

B. 30°;

C. 20°;

D. 10°.

Hướng dẫn giải

Đáp án đúng là: D

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Xét tam giác ABI và tam giác ACI có:

AB = AC (giả thiết),

IB = IC (do I là trung điểm của BC),

AI là cạnh chung

Do đó ∆ABI = ∆ACI (c.c.c)

Suy ra BAI^=CAI^,AIB^=AIC^,ABI^=ACI^ (các cặp góc tương ứng)

Mà ABI^=80° nên ACI^=80°

Ta có:AIB^+AIC^=180° (hai góc kề bù)

Nên AIB^=AIC^=180°2=90°

Do đó tam giác ACI vuông tại I

Khi đó ACI^+CAI^=90° (trong tam giác vuông, hai góc nhọn phụ nhau)

Suy ra CAI^=90°–ACI^=90°–80°=10°

Vậy ta chọn phương án D.

Câu 10. Cho hình vẽ bên dưới:

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Số đo góc M và độ dài cạnh MN lần lượt là:

A. M^=45° MN = 5 cm;

B. M^=60° MN = 3 cm;

C. M^=75° MN = 5 cm;

D. M^=80° MN = 3 cm.

Hướng dẫn giải

Đáp án đúng là: C

Xét tam giác ABC và tam giác MNP có:

AB = MN, BC = NP, AC = MP (giả thiết)

Suy ra ∆ABC = ∆MNP (c.c.c)

Do đó MN = BA = 5 cm (hai cạnh tương ứng) và M^=A^ (hai góc tương ứng)

Xét tam giác BCA có: B^+C^+A^=180°(định lí tổng ba góc trong một tam giác)

Suy ra A^=180°–B^–C^

Hay A^=180°–45°–60°=75°

Do đó M^=75°

Vậy M^=75° và MN = 5 cm.

Câu 11. Cho tam giác IOH, vẽ cung tròn tâm I bán kính OH, vẽ cung tròn tâm O bán kính IH, hai cung tròn này cắt nhau tại K (K và H nằm khác phía so với đường thẳng IO). Khẳng định nào sau đây là đúng nhất?

A. HO // KI;

B. OK // IH;

C. Cả A và B đều sai;

D. Cả A và B đều đúng.

Hướng dẫn giải

Đáp án đúng là: D

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Xét ∆IOH và ∆IOK có:

KO = IH (K nằm trên cung tròn tâm O bán kính IH),

OH = IK (K nằm trên cung tròn tâm I bán kính OH),

IO là cạnh chung

Do đó ∆IOH = ∆OIK (c.c.c)

Suy ra IOH^=OIK^,OIH^=IOK^ (các cặp góc tương ứng)

Mà OIK^ và IOH^ ở vị trí so le trong của IK và OH nên IK // OH (dấu hiệu nhận biết)

IOK^ và OIH^ ở vị trí so le trong của KO và IH nên KO // IH (dấu hiệu nhận biết)

Vậy ta chọn phương án D.

Câu 12. Cho tam giác MNP có MN < MP. Lấy điểm I trên cạnh MP sao cho MN = PI. Gọi H là điểm sao cho HM = HP, HN = HI.

Khẳng định nào sau đây là đúng ?

A. ∆MNH = ∆PIH;

B. ∆MNH = ∆PHI;

C. MNH^=HPI^;

D. MHN^=HIP^.

Hướng dẫn giải

Đáp án đúng là: A

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Xét ∆MNH và ∆PIH ta có:

HM = HP (giả thiết);

HN = HI (giả thiết);

MN = PI (giả thiết).

Do đó ∆MNH = ∆PIH (c.c.c)

Suy ra MNH^=PIH^,MHN^=PHI^ (các cặp góc tương ứng)

Vậy ta chọn phương án A.

Câu 13. Cho hai tam giác MNP và OHK có MN = OH, NP = HK. Điều kiện để ∆NMP = ∆HOK theo trường hợp cạnh – cạnh – cạnh là:

A. MP = OH;

B. MN = KH;

C. MP = OK;

D. Không có điều kiện nào thoả mãn.

Hướng dẫn giải

Đáp án đúng là: C

Vì ∆NMP = ∆HOK theo trường hợp cạnh – cạnh – cạnh mà MN = OH, NP = HK

Nên điều kiện còn thiếu là MP = OK.

Vậy ta chọn phương án C.

Câu 14. Cho tam giác NMP (NP < MN). Trên cạnh MN lấy điểm E sao cho NE = NP. Lấy Q là trung điểm của PE. Qua M kẻ đường thẳng vuông góc với PE tại F. Chọn khẳng định đúng:

A. NQE^=80°

B. FM // NQ;

C. ∆ENQ = ∆PQN;

D. Cả A, B, C đều đúng.

Hướng dẫn giải

Đáp án đúng là: B

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

• Xét ∆ENQ và ∆PQN có:

NE = NP (giả thiết),

QE = QP (do Q là trung điểm của PE),

NQ là cạnh chung

Suy ra ∆ENQ = ∆PNQ (c.c.c)

Do đó phương án C là sai.

• Vì ∆ENQ = ∆PNQ (chứng minh trên)

Suy ra ENQ^=PNQ^,NEQ^=NPQ^,EQN^=NQP^ (các cặp góc tương ứng)

Mà EQN^+PQN^=180° (hai góc kề bù)

Nên EQN^=PQN^=180°2=90°

Do đó NQ ⊥ PE. Vậy đáp án A là sai

Mà FM ⊥ PE (giả thiết), nên FM // NQ , vậy đáp án B là đúng

Vậy ta chọn phương án B.

Câu 15. Cho hình vẽ:

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Biết BAD^=CDA^=90°, AC = BD. Độ dài cạnh CD là:

A. 4 cm;

B. 5 cm;

C. 2 cm;

D. 3 cm.

Hướng dẫn giải

Đáp án đúng là: C

Xét ∆ABD và ∆ACD có:

BAD^=CDA^=90° (giả thiết),

AC = BD (giả thiết),

AD là cạnh chung

Do đó ∆ABD = ∆DCA (cạnh huyền – cạnh góc vuông)

Suy ra AB = CD (cặp cạnh tương ứng)

Mà AB = 2 cm nên CD = 2 cm.

Vậy độ dài cạnh CD là 2 cm.

Xem thêm các bài trắc nghiệm Toán 7 Cánh diều hay, chi tiết khác:

Trắc nghiệm Toán 7 Bài 3: Hai tam giác bằng nhau

Trắc nghiệm Toán 7 Bài 4: Trường hợp bằng nhau thứ nhất của tam giác: cạnh – cạnh – cạnh

Trắc nghiệm Toán 7 Bài 5: Trường hợp bằng nhau thứ hai của tam giác: cạnh – góc – cạnh

Trắc nghiệm Toán 7 Bài 6: Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc

Trắc nghiệm Toán 7 Bài 7: Tam giác cân

Tags : Tags toán 7   Trắc nghiệm toán 7   trường hợp bằng nhau cạnh - cạnh - cạnh
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Vở bài tập Toán lớp 2 Tập 1 trang 29, 30, 31, 32: Tia số – Số liền trước, số liền sau | Chân trời sáng tạo

Next post

Giáo án Toán lớp 3 Bài 57 (Kết nối tri thức 2023): Chia số có bốn chữ số cho số có một chữ số

Bài liên quan:

20 câu Trắc nghiệm Tập hợp các số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7

Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

20 Bài tập Tập hợp các số hữu tỉ có đáp án – Toán 7

Giải sgk tất cả các môn lớp 7 Kết nối tri thức | Giải sgk các môn lớp 7 chương trình mới

Trọn bộ Trắc nghiệm Toán 7 Kết nối tri thức có đáp án

Giải sgk Toán 7 (cả 3 bộ sách) | Giải bài tập Toán 7 (hay, chi tiết)

Bài giảng điện tử Tập hợp các số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7

Bài giảng điện tử Toán 7 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 7

Leave a Comment Hủy

Mục lục

  1. 20 câu Trắc nghiệm Tập hợp các số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  2. Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  3. 20 Bài tập Tập hợp các số hữu tỉ có đáp án – Toán 7
  4. Giải sgk tất cả các môn lớp 7 Kết nối tri thức | Giải sgk các môn lớp 7 chương trình mới
  5. Trọn bộ Trắc nghiệm Toán 7 Kết nối tri thức có đáp án
  6. Giải sgk Toán 7 (cả 3 bộ sách) | Giải bài tập Toán 7 (hay, chi tiết)
  7. Bài giảng điện tử Tập hợp các số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7
  8. Bài giảng điện tử Toán 7 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 7
  9. Giáo án Toán 7 Bài 1 (Kết nối tri thức 2023): Tập hợp các số hữu tỉ
  10. Giáo án Toán 7 Kết nối tri thức (cả năm) mới nhất 2023
  11. Vở thực hành Toán 7 Kết nối tri thức | Giải VTH Toán 7 Tập 1, Tập 2 hay, chi tiết
  12. Vở thực hành Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  13. Lý thuyết Toán lớp 7 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 7 | Kết nối tri thức
  14. Sách bài tập Toán 7 Kết nối tri thức | SBT Toán 7 | Giải SBT Toán 7 | Giải sách bài tập Toán 7 hay nhất | Giải SBT Toán 7 Tập 1, Tập 2 | Giải SBT Toán lớp 7 Kết nối tri thức | SBT Toán 7 KNTT
  15. Giải sgk Toán 7 Kết nối tri thức | Giải Toán 7 | Giải Toán lớp 7 | Giải bài tập Toán 7 hay nhất | Giải Toán 7 Tập 1, Tập 2 Kết nối tri thức
  16. Sách bài tập Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  17. Giải SGK Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  18. 20 câu Trắc nghiệm Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  19. Lý thuyết Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  20. 21 Bài tập Cộng, trừ, nhân, chia số hữu tỉ có đáp án – Toán 7
  21. Bài giảng điện tử Cộng, trừ, nhân, chia số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7
  22. Giáo án Toán 7 Bài 2 (Kết nối tri thức 2023): Cộng, trừ, nhân, chia số hữu tỉ
  23. Vở thực hành Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  24. Sách bài tập Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  25. Giải SGK Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  26. Giáo án Toán 7 (Kết nối tri thức 2023): Luyện tập chung trang 14
  27. Vở thực hành Toán 7 (Kết nối tri thức): Luyện tập chung trang 11, 12, 13
  28. Giải SGK Toán 7 (Kết nối tri thức): Luyện tập chung trang 14
  29. 20 câu Trắc nghiệm Lũy thừa với số mũ tự nhiên của 1 số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  30. Lý thuyết Lũy thừa với số mũ tự nhiên của một số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  31. Vở thực hành Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ
  32. 20 Bài tập Lũy thừa với số mũ tự nhiên của một số hữu tỉ có đáp án – Toán 7
  33. Sách bài tập Toán 7 Bài 3 (Kết nối tri thức): Luỹ thừa với số mũ tự nhiên của một số hữu tỉ
  34. Giải SGK Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ
  35. 22 câu Trắc nghiệm Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  36. Lý thuyết Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  37. Bài giảng điện tử Thứ tự thực hiện các phép tính. Quy tắc chuyển vế | Kết nối tri thức Giáo án PPT Toán 7
  38. Giáo án Toán 7 Bài 4 (Kết nối tri thức 2023): Thứ tự thực hiện các phép tính. quy tắc chuyển vế
  39. Vở thực hành Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện phép tính. Quy tắc chuyển vế
  40. 20 Bài tập Thứ tự thực hiện các phép tính. Quy tắc chuyển vế có đáp án – Toán 7
  41. Sách bài tập Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  42. Giải SGK Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  43. Giáo án Toán 7 (Kết nối tri thức 2023): Luyện tập chung trang 23
  44. Vở thực hành Toán 7 (Kết nối tri thức): Luyện tập chung trang 19, 20, 21
  45. Toán lớp 7 (Kết nối tri thức) Luyện tập chung trang 23
  46. 32 câu Trắc nghiệm Toán lớp 7 Chương 1 (Kết nối tri thức) có đáp án: Số hữu tỉ
  47. Lý thuyết Toán 7 Chương 1 (Kết nối tri thức 2023): Số hữu tỉ hay, chi tiết
  48. Giáo án Toán 7 (Kết nối tri thức 2023): Bài tập cuối chương 1
  49. Vở thực hành Toán 7 (Kết nối tri thức): Bài ôn tập cuối chương 1
  50. 24 Bài tập Toán 7 Chương 1 có đáp án: Số hữu tỉ
  51. Sách bài tập Toán 7 (Kết nối tri thức): Ôn tập chương 1 trang 20, 21
  52. Giải SGK Toán 7 (Kết nối tri thức): Bài tập cuối chương 1

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán